On the Cluster Sets of Analytic Functions in a Jordan Domain.

Ву Макото Онтзика.

(Received Oct. 11, 1948)

I. Cluster Sets defined by the convergence set.

1. Let D be a Jordan domain, C its boundary, E any set on $D + C^{(1)}$ and z_0 , z_0' two points on C. Divide C into two parts C_1 and C_2 by z_0 and z_0' . We denote the part of D, C, E, C_1 and C_2 in $|z-z_0| \leq r$ by D_r , C_r , E_r , $C_r^{(1)}$ and $C_r^{(2)}$ respectively and the part of $|z-z_0|=r$ in D by θ_r . Let w=f(z) be a meromorphic function in D and \mathfrak{D}_r the set of values taken by f(z) in D_r . Then the intersection $\bigcap_{r>0} \overline{\mathfrak{D}_r} = S_{z_0}^{(D)}(^2)$ is called the *cluster* set of f(z) in D at z_0 and the intersection $\bigcap_{r>0} \mathfrak{D}_r = R_{z_0}^{(D)}$ the range of values of f(z) in D at z_0 . The intersection $\bigcap_{r>0} \overline{M}_r^{(E)} = S_{z_0}^{(E)}$, where $M_r^{(E)}$ is the union $\cup S_{z'}^{(D)}$, for $z_0 \rightleftharpoons z' \in E$, $S_{z'}^{(D)}$ consisting of the single value f(z') for $z' \in D$, is called the cluster set of f(z) on E at z_0 . For example, $S_{z_0}^{(C)}$, $S_{z_0}^{(C_1)}$, $S_{z_0}^{(C_2)}$, and $S_{z_0}^{(L)}$, where L is a Jordan curve in D terminating at z_0 , are thus defined. If $S_{z_0}^{(L)}$ consists of only one value α , we call α the asymptotic value, L the asymptotic path and we denote the set of all the asymptotic values at z_0 by $\Gamma_{z_0}^{(D)}$, and call it the convergence set of f(z) at z_0 . When f(z) omits at least three values in the neighbourhood of $z_0(3)$, $\Gamma_{z_0}^{(D)}$ consists of at most one value (4). Then we call the value of non-empty $\Gamma_{z_o}^{(D)}$ the boundary value at z_0 , and denote it by $f(z_0)$. Furthermore the intersection $\bigcap \overline{Y_r^{(k)}} = \Gamma_{z_0}^{(k)}$ for $E \subset C$, $Y_r^{(E)}$ being the union $\cup \Gamma_{z'}^{(D)}$ for $z_0 \neq z' \in E_r$, is called the cluster set of the convergence set of f(z) on E at z_0 .

 $S_{z_0}^{(D)}$ includes all the other cluster sets and $S_{z_0}^{(E)}$ includes $\Gamma_{z_0}^{(E)}$. $S_{z_0}^{(D)}$, $S_{z_0}^{(C_1)}$, $S_{z_0}^{(C_2)}$ and $S_{z_0}^{(L)}$ are continuums but not necessarily $\Gamma_{z_0}^{(C)}$, $\Gamma_{z_0}^{(C_1)}$ and $\Gamma_{z_0}^{(C_2)}$ are (⁵). 2. Let f(z) be bounded in the neighbourhood of z_0 . Then it is known

2. Let f(z) be bounded in the neighbourhood of z_0 . Then it is known that (⁶)

$$\overline{\lim_{z \to z_0}} |f(z)| = \overline{\lim_{\mathcal{C} \ni z' \to z_0}} (\overline{\lim_{z \to z' \neq z_0}} |f(z)|),$$

and that this is equivalent to $B(S_{z_0}^{(D)}) \subset B(S_{z_0}^{(O)})$, B(S) being the boundary set of $S({}^7)$. Also it is known that $B(S_{z_0}^{(D)}) \subset B(\Gamma_{z_0}^{(O)})$ holds in the case where D is a circle (⁸); then it holds also in the general case where D is a Jordan domain, by means of a one-to-one continuous corresponden-