On the Cluster Sets of Analytic Functions in a Jordan Domain.

By Makoto Ohisuka.

(Received Oct. 11, 1948)

I. Cluster Sets defined by the convergence set.

1. Let D be a Jordan domain, C its boundary, E any set on $\left.D+C{ }^{1}\right)$ and z_{0}, z_{0}^{\prime} two points on C. Divide C into two parts C_{1} and C_{2} by z_{0} and z_{0}^{\prime}. We denote the part of D, C, E, C_{1} and C_{2} in $\left|z-z_{0}\right| \leqq r$ by D_{r}, C_{r}, $E_{r}, C_{r}{ }^{(1)}$ and $C_{r}{ }^{(2)}$ respectively and the part of $\left|z-z_{0}\right|=r$ in D by θ_{r}. Let $z=f(z)$ be a meromorphic fnnction in D and \mathfrak{D}_{r} the set of values taken by $f(z)$ in D_{r}. Then the intersection $\cap \overline{\mathfrak{D}}_{r}=S_{z_{0}}^{(D)}\left({ }^{(}\right)$is called the cluster set of $f(z)$ in D at z_{0} and the intersection $\cap_{r>0} \mathfrak{D}_{r}=R_{z_{0}}^{(D)}$ the range of values of $f(z)$ in D at z_{0}. The intersection ${ }_{r>0} \bar{M}_{r}^{(E)}=S_{z_{0}}^{(E)}$, where $M_{r}^{(E)}$ is the union $\cup S_{z^{\prime}}^{(D)}$, for $z_{0} \neq z^{\prime} \in E, S_{z^{\prime}}^{(D)}$ consisting of the single value $f\left(z^{\prime}\right)$ for $z^{\prime} \in D$, is called the cluster set of $f(z)$ on E at z_{0}. For example, $S_{z_{0}}^{(C)}, S_{z_{0}}^{\left(C_{1}\right)}, S_{z_{0}}^{\left(C_{2}\right)}$ and $S_{z_{0}}^{(L)}$, where L is a Jordan curve in D terminating at z_{0}, are thus defined. If $S_{z_{0}}^{(L)}$ consists of only one value π, we call α the asymptotic value, L the asymptotic path and we denote the set of all the asymptotic values at z_{0} by $\Gamma_{z_{0}}^{(D)}$, and call it the convergence set of $f(z)$ at z_{0}. When $f(z)$ omits at least three values in the neighbourhood of $\left.z_{0}{ }^{3}\right), \Gamma_{z_{0}}^{(D)}$ consists of at most one value $\left({ }^{4}\right)$. Then we call the value of non-empty $\Gamma_{z_{0}}^{(D)}$ the boundary value at z_{0}, and denote it by $f\left(z_{0}\right)$. Furthermore the intersection $\cap \overline{Y_{r}^{(k)}}=\Gamma_{z_{0}}^{(k)}$ for $E \subset C, Y_{r}^{(E)}$ being the union $\cup \Gamma_{z^{\prime}}^{(j)}$ for $z_{0} \not z^{\prime} \in E_{r}$, is called the cluster set of the convergence set of $f(z)$ on E at z_{0}.
$S_{z_{0}}^{(D)}$ includes all the other cluster sets and $S_{z_{0}}^{(E)}$ includes $\Gamma_{z_{0}}^{(E)} . S_{z_{0}}^{(D)}, S_{z_{0}}^{\left(C_{1}\right)}$, $S_{z_{0}}^{\left(C_{2}\right)}$ and $S_{z_{0}}^{(L)}$ are continuums but not necessarily $\Gamma_{z_{0}}^{(C)}, \Gamma_{z_{0}}^{\left(C_{1}\right)}$ and $\Gamma_{z_{0}}^{\left(C_{2}\right)}$ are ($\left.{ }^{5}\right)$.
2. Let $f(z)$ be bounded in the neighbourhood of z_{0}. Then it is known that $\left({ }^{6}\right)$

$$
\varlimsup_{z \rightarrow z_{0}}|f(z)|=\varlimsup_{C z z^{\prime} \rightarrow z_{0}}\left(\varlimsup_{z \rightarrow z^{\prime} \neq z_{0}}|f(z)|\right),
$$

and that this is equivalent to $B\left(S_{z_{0}}^{(D)}\right) \subset B\left(S_{z_{0}}^{(C)}\right), B(S)$ being the boundary set of $S\left(^{7}\right)$. Also it is known that $B\left(S_{z_{0}}^{(D)}\right) \subset B\left(\Gamma_{z_{0}}^{(C)}\right)$ holds in the case where D is a circle $\left({ }^{s}\right)$; then it holds also in the general case where D is a Jordan domain, by means of a one-to-one continuous corresponden-

