On affine collineations in projectively related spaces.

KENTARO YANO AND TYIÛTI IMAI.

(Received Sept. 1, 1949)

§1. Introduction. M. S. Knebelman¹⁾ proved a theorem on motions in conformally related Riemannian spaces: If an n-dimensional Riemannian space V_n admits an r-parameter group G_r of motions (r < n), then there exist n-r independent Riemannian spaces which are conformal to the Riemannian space V_n and admit the group G_r as group of motions.

One of the present authors has given in his forthcoming book a simple proof of this theorem. Let X_a be the r infinitesimal operators of the group G_r of motions in V_n whose fundamental tensor is $g_{\mu\nu}$, then we have

(1.1)
$$X_{\alpha}g_{\mu\nu}=0, \qquad (a,b,c,...=1,2,...r; \lambda,\mu,\nu,...=1,2,...,n).$$

In order that a Riemannian space which is conformal to V_n and consequently whose fundamental tensor is of the form $\rho^2 g_{\mu\nu}$ admit the G_r as a group of motions, it is necessary and sufficient that we have

$$X_a(\rho^2 g_{\mu\nu}) = 0$$
,

from which,

$$(1.2) X_a \rho^2 = 0,$$

because of (1.1). But, X_a being the operators of a group, that is, X_a satisfying the relations

$$(1.3) (X_b X_c) f = c_{bc}^{\cdot \cdot a} X_a f,$$

the equations (1.2) are completely integrable. Thus the theorem of Knebelman is proved.

The purpose of the present Note is to give a simple proof of an analogous theorem for group of affine collineations in projectively related spaces which is also due to Knebelman.³⁾

¹⁾ M.S. Knebelman: On groups of motions in related spaces. Amer. Jour. of Math., 52(1930), 280-282.

²⁾ K. Yano: Groups of transformations in generalized spaces, in press.

³⁾ M. S. Knebelman: Collineations of projectively related affine connections. Annals of Math., 29 (1928), 389-394.