Journal of the Mathematical Society of Japan Vol. 1, No. 4, April, 1950

Note on the Cluster Sets of Analytic Functions.

Kiyoshi Noshiro.

(Received Feb. 15, 1949)

1. Let *D* be an arbitrary connected domain and *C* be its boundary. Let *E* be a closed set of capacity¹⁾ zero, included in *C* and z_0 be a point in *E*. Suppose that W=f(z) is a single-valued function meromorphic in *D*. We associate with z_0 three cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ as follows: $S_{z_0}^{(D)}$ is the set of all values *a* such that $\lim_{v \to \infty} f(z_v) = a$ with a sequence $\{z_v\}$ of points tending to z_0 inside *D*. $S_{z_0}^{*(C)}$ is the intersection $\bigcap M_r$, where M_r denotes the closure of the union $\bigcup S_{z_1}^{(D)}$ for all z' belonging to the common part of *C*-*E* and $U(z_0, r)$: $|z-z_0| < r$. In the particular case when *E* consists of a single point z_0 , we denote $S_{z_0}^{*(C)}$ by $S_{z_0}^{(C)}$ for the sake of simplicity. Obviously $S_{z_0}^{(D)}$ and $S_{z_0}^{*(C)}$ are closed sets such that $S_{z_0}^{*(C)} \subset S_{z_0}^{(D)}$, and $S_{z_0}^{*(C)}$ becomes empty if and only if there exists a positive number *r* such that C-E and $U(z_0, r)$ have no point in common.

Concerning the cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ the following theorems are known:

Theorem I. (Iversen-Beurling-Kunugi)²⁾ $B(S_{z_0}^{(D)}) \subset S_{z_0}^{(C)}$, where $B(S_{z_0}^{(D)})$ denotes the boundary of $S_{z_0}^{(D)}$, or, what is the same, $\Omega = S_{z_0}^{(D)} - S_{z_0}^{(C)}$ is an open set.

Theorem II. (Beurling-Kunugi)³⁾ Suppose that $\Omega = S_{z_0}^{(D)} - S_{z_0}^{(C)}$ is not empty and denote by Ω_n any connected component of Ω . Then w = f(z) takes every value, with two possible exceptions, belonging to Ω_n infinitely often in any neighbourhood of z_0 .

Theorem. I* (Tsuji)⁴ $B(S_{z_0}^{(D)}) \subset S_{z_0}^{*(C)}$, that is, $Q = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is an open set.

Theorem II*. (Kametani-Tsuji)⁵⁾ Suppose that $\Omega = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty. Then w = f(z) takes every value, except a possible set of w-values of capacity zero, belonging to Ω infinitely often in any neighbourhood of z_0 .

Evidently Theorem I* is a complete extension of Theorem I. It seems however that there exists a large gap between Theorem II and Theorem II*. The object of the present note is to show that under the assumption that D is simply connected, Theorem II* can be written in the form of Theorem II.