On the jump of a function and its Fourier series. Notes on Fourier Analysis (XXXIII)

Noboru Matsuyama.

(Received Dec. 10, 1947)

 \S 1. Let f(x) be an integrable and periodic function with period 2π and its Fourier series be

$$\mathfrak{S}[f] = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \operatorname{con} nx + b_n \sin nx).$$

Fejér has proved that, if there is an s such that

$$\int_0^1 \psi(u) - s | du = o(t),$$

$$\psi(u) = (f(u) - f(-u))/2,$$

then the sequence (nb_n) is $(R, \log n, 1)$ -summable to $2s/\pi$. Recently, O. Szàsz has proved that if

(1)
$$\int_0^t (\psi(u) - s) du = o(t)$$

and

(2)
$$\int_0^t |\psi(u) - s| du = O(t),$$

then the sequence (nb_n) is (C, 2)-summable to $2s/\pi$.

We shall now consider the $(R, \log n, u)$ -summability of the sequence (nb_n) . In fact we shall prove the following theorems:

Theorem 1. If for any $a \ge 0$

$$\lim_{t\to 0} \psi(t) = s \ (R, \log n, u),$$

then the sequence (nb_n) is $(R, \log n, 1+a+\delta)$ -summable to $2s/\pi$, where δ is any positive number.

Theorem. 2. If for any $a \ge 1$, (bn) is $(R, \log n, a)$ – summable to $2s/\pi$, then

$$\lim_{t\to 0} \psi(t) = s \ (R, \log n, \ \alpha+1+\delta),$$

& being any positive number.

§ 2. Lemmas. Let us put

$$l_{\alpha}(t) = \frac{1}{t} \int_{0}^{t} (\log (t/u))^{\alpha} \sin u \ du$$