On the weak Topology of an infinite Product Space.

Atuo Komatu.

(Received Oct. 25, 1947.)

1. Introduction. We shall define a monotonic topology of a space R as a closure operator which assigns to each subset M of R a closure $\vec{M}=R$ with following properties

$$
\overline{O_{1}}=0, \quad M \supset N \rightarrow \bar{M} \supset \bar{N} .
$$

If we assume furthermore

$$
\overline{M \cup N} \subset \bar{M} \cup \bar{N}
$$

then we say that the topology is additive.
In this note we define a weak monotonic topology and from it a weak additive topology of an infinite product space by means of the closure operator, and show that these topologies are the weakest respectively in all allowable topologies.
2. Let $R=P\left\{R^{x} \mid X\right\}$ be the $X=\{x\}$ product space of R^{x} whose points are $p=\left\{p^{x} \mid p^{x} \in R^{x}, x \in X\right\}$. Usually the topology of R is necessarily to satisfy the condition that the projection $\pi^{x}: R \rightarrow R^{x}$ is continuous. This condition is expressed by the closure operator as follows :

$$
\begin{equation*}
\left.\pi^{x}(\bar{M}) \subset \overline{\pi^{x}(M}\right)=\overline{M^{x}} \quad \text { for any } \quad M \subset R \tag{1}
\end{equation*}
$$

where the left side closure means that in R, and the right side closure in R^{x}.

If we define

$$
{ }^{n} \bar{M}=P\left\{\overline{M^{x}} \mid x \subset X\right\} \quad \text { for any } \quad M=R,
$$

this closure determines a monotonic topology of R, for it follows that

$$
M \supset N \rightarrow M^{x} \supset N^{x} \rightarrow \overline{M^{x}} \supset \overline{N^{x}} \rightarrow P\left\{\overline{M^{x}} \mid X\right\} \supset P\left\{\overline{N^{x}} \mid X\right\}
$$

Clearly this topology ${ }^{m} \bar{M}$ is the weakest in all topologies of R satisfying (1).
3. We shall define now the weakest additive topology of R. Let μ be a finite subdivision of $M(\simeq R)$,

$$
\mu: M=M_{1} \cup \ldots \ldots \cup M_{n(\mu)}
$$

