On the cohomology theory of rings.

By Yukiyosi KAWADA.

(Received Oct. 25, 1947.)

Recently G. Hochschild has developed the theory of cohomology groups of associative algebrasⁿ. We shall consider in this paper some problems concerning the cohomology groups of rings. Especially we shall be able to characterize the vanishing of $H_n(\mathbf{R}, \mathbf{m})$ for every \mathbf{R} - \mathbf{R} -module \mathbf{m} in the case n=1 and 3 by the extension properties (Theorem 6 and 8).

In § 1 necessary definitions from Hochschild's theory are given. § 2 concerns the extensions of R-R-modules. In § 3 we define a useful mapping $F_{\beta\gamma}$ of $H_n(R, m)$ to $H_{n+1}(R, n)$ for any R-R-modules m and n, which is a generalization of the fundamental isomorphism of Hochschild. In § 4 we consider the special extension problem, which corresponds to the Teichmüller's theory for simple algebras. These considerations can also be applied to Lie algebras, as I s all show in another paper.

§ 1. Definitions of the cohomology groups of rings.

Let **R** be a ring and **m** an **R-R**-module. Namely, we suppose that am, mb ($m \in \mathbf{m}$, a, $b \in \mathbf{R}$) belong to **m**, are linear, distributive in a, b, m, and satisfy the associative law a(bm) = (ab)m, (ma)b = m(ab), (am)b = a(mb). We call an element $f_0 \in \mathbf{m}$ a 0-cochain, and $f_n(a_1, \ldots, a_n) \in \mathbf{m}$ ($a_i \in \mathbf{R}$), which is linear with respect to a_1, \ldots, a_n , a n-cochain $(n \ge 1)$. We denote the module of all n-coclains by $\mathbf{L}_n(\mathbf{R}, \mathbf{m})$. Moreover, we define the coboundary operator $\partial f_n = f_{n+1}(f_n \in \mathbf{L}_n(\mathbf{R}, \mathbf{m}), f_{n+1} \in \mathbf{L}_{n+1}(\mathbf{R}, \mathbf{m}))$ by

$$(\delta f_n)(\alpha_1, \ldots, \alpha_{n+1}) = \alpha_1 f_n(\alpha_2, \ldots, \alpha_{n+1}) + \sum_{k=1}^n (-1)^k f_n(\alpha_1, \ldots, \alpha_k \alpha_{k+1}, \ldots, \alpha_{n+1}) + (-1)^{n+1} f_n(\alpha_1, \ldots, \alpha_n) \alpha_{n+1}.$$
 (1)

Then δ is a linear mapping and satisfies the relation $\delta(\delta f_n) = 0$ for any f_n . We call an element f_n with $\delta f_n = 0$ an *n-cocycle* $(n \ge 0)$ and an element f_n with $f_n = \delta g_{n-1}(n \ge 1)$ an *n-coboundary*. We denote the module of all *n*-cocycles (*n*-coboundaries) by $C_n(R, m)$ $(B_n(R, m))$. And we define the *n-cohomology group* $H_n(R, m) = C_n(R, m)/B_n(R, m)$, $(n \ge 1)$.

§ 2. Extension of R-R-module and 1-cohomology group $H_1(R, m)$.

Def. Let m, n be two R-R-modules. We call an another R-R-module M an extension of m by n, if (i) $M \supseteq n$, (ii) $M/n \cong m$ (as R-R-module), (iii)