Note on faithful modular representations of a finite group.

By Tadasi NAKAYAMA.

(Received Oct. 25, 1947.)

In a recent note¹⁾ the writer has studied the structure of finite groups possessing a faithful irreducible representation (i.r.), directly indecomposable representation (d.i.r.), or a faithful directly indecomposable component (d.i.c.) of the regular representation (r.r.) in a modular field of characteristic $p \neq 0$ (p-modular field). The result is similar to the case of groups with faithful non-modular i.r.²⁾ Namely: Let \mathfrak{M} be the product of the totality of minimal abelian invariant subgroups of order prime to p in a finite group \mathfrak{G} , and let $\mathfrak{M} = \mathfrak{L}_1 \times \mathfrak{L}_2 \times \ldots \times \mathfrak{L}_q$ be its decomposition into subgroups of prime power orders with different primes $l_i(\neq p)$. \mathfrak{G} possesses a faithful p-modular i.r., if and only if \mathfrak{G} has no invariant subgroup $\neq 1$ whose order is a power of p and moreover the following condition is satisfied:

- (*) every \mathfrak{L}_i possesses an invariant subgroup with cyclic factor group which contains no invariant subgroup +1 of \mathfrak{B} .
- B has a faithful d.i.c. of p-modular r.r. (or a faithful p-modular d.i.r. whatsoever), if and only if the condition (*) is satisfied.

(Furthermore, (*) is equivalent to that

(†) each $\mathfrak{L}=\mathfrak{L}_i$ is a product of c, say, mutually \mathfrak{G} -isomorphic minimal invariant subgroups of \mathfrak{G} and the inequality $c \leq m/\lambda$ is satisfied, where l^m is the order of the minimal factor and l^{λ} is the number of elements in the \mathfrak{G} -automorphism quasifield of the minimal factor.)

As a corollary of the result we have: 1) If \mathfrak{G} has a faithful non-modular i.r. then it has a faithful d.i.c. of p-modular r.r. (for any p); 2) If \mathfrak{G} possesses faithful p-modular and q-modular d.i.r. with distinct p, q, then it has a faithful non-modular i.r.

The present note is to supplement these by giving mutual relations between such modular and non-modular representations. We prove namely³⁾:

- I. If a group⁴) S possesses a faithful non-modular i.r.⁵) M(S), then any d.i.c. V(S) of a modular r.r. containing M(S), in the sense of R. Brauer-C. Nesbitt⁶), is faithful.
- II. If & possesses a faithful non-modular i.r.", then an arbitrary faithful d.i.c. of a modular r.r. contains a faithful non-modular i.r.