On the Besov-Hankel spaces*

By Jorge J. BETANCOR and Lourdes RODRÍGUEZ-MESA

(Received Oct. 15, 1996)

1. Introduction and preliminaries.

Consider the Hankel transformation h_{μ} defined for suitable functions ϕ by

$$h_{\mu}(\phi)(x) = \int_0^\infty y^{2\mu+1}(xy)^{-\mu} J_{\mu}(xy)\phi(y) dy, \quad x \in (0,\infty),$$

where J_{μ} represents the Bessel function of the first kind and order μ . Here and in the sequel μ is a real number greater than -1/2. The convolution for the transformation h_{μ} is defined through

$$(\phi \# \psi)(x) = \int_0^\infty (\tau_x \phi)(y) \psi(y) \, d\gamma(y), \quad x \in (0, \infty),$$

where the Hankel translation operator $\tau_x, x \in (0, \infty)$, is given by

$$(\tau_x \phi)(y) = \int_0^\infty D(x, y, z) \phi(z) \, d\gamma(z), \quad x, y \in (0, \infty),$$

being $d\gamma(x) = (x^{2\mu+1}/2^{\mu}\Gamma(\mu+1)) dx$ and

$$D(x,y,z) = \frac{2^{3\mu-1}\Gamma(\mu+1)^2}{\Gamma(\mu+1/2)\sqrt{\pi}}(xyz)^{-2\mu}A(x,y,z)^{2\mu-1}, \quad x,y,z \in (0,\infty).$$

Here A(x, y, z) is the area of a triangle with sides x, y, z when such a triangle exists and A(x, y, z) = 0 otherwise.

In earlier papers ([6] and [9]) the #-convolution have been investigated on the spaces L^p_μ defined for $1 \le p < \infty$ to consist of those complex-valued functions ϕ , measurable on $(0,\infty)$ and such that $\|\phi\|_{p,\mu} < \infty$, where

$$\|\phi\|_{p,\mu} = \left\{ \int_0^\infty |\phi(x)|^p x^{2\mu+1} dx \right\}^{1/p}.$$

By L^{∞} we denote as usual the space of essentially bounded measurable functions on $(0,\infty)$ and $\| \|_{\infty}$ represents the usual norm in L^{∞} . The space of compactly supported continuous functions on $(0,\infty)$ is denoted by C_0 .

Let $T \in (0, \infty)$. We define the Bochner-Riesz mean $\sigma_T^{\beta}(\phi)$ of a measurable function ϕ on $(0, \infty)$ by

A.M.S. Subject Classification: 46F12.

Key words and phrases: Hankel transform, LP-spaces, Bochner-Riesz means.

^{*}Partially supported by Consejería de Educación, Gobierno Autónomo de Canarias, Proyecto 967/15-9-95 and by DGICYT Grant PB 94-0591 (Spain).