A generalization of Rejection Lemma of Drozd-Kirichenko

By Osamu Iyama

(Received June 17, 1996) (Revised Sept. 27, 1996)

1. Introduction.

Let R be a complete discrete valuation ring, which is fixed once for all as our base ring. Let K denote the quotient field of R. As for basic terminology such as R-lattice, R-order etc., we mostly follow that of [CR]. Let Λ be an R-order in a K-algebra $\tilde{\Lambda} := K\Lambda \simeq K \otimes_R \Lambda$, and let $\operatorname{Ind} \Lambda$ denote the set of isomorphism classes of indecomposable left Λ -lattices. For an overorder Γ of Λ in $\tilde{\Lambda}$, we may naturally consider $\operatorname{Ind} \Gamma$ as a subset of $\operatorname{Ind} \Lambda$. A subset $\mathscr S$ of $\operatorname{Ind} \Lambda$ will be called a rejectable subset if there is an overorder Γ such that $\mathscr S = \operatorname{Ind} \Lambda - \operatorname{Ind} \Gamma$. The map $\Gamma \mapsto (\operatorname{Ind} \Lambda - \operatorname{Ind} \Gamma)$ defines a bijection from the set of all overorders of Λ onto the set of all rejectable subsets of $\operatorname{Ind} \Lambda$. Indeed, the inverse map is given by $\mathscr S \mapsto \Lambda(\mathscr S)$. Here, for any subset $\mathscr S$ of $\operatorname{Ind} \Lambda$, $\Lambda(\mathscr S)$ is defined as the intersection $\bigcap_{L \in \operatorname{Ind} \Lambda - \mathscr S} O_l(L)$ of the left multiplier $O_l(L) := \{x \in \tilde{\Lambda} | xL \subseteq L\}$.

For any subset \mathscr{S} , $\Lambda(\mathscr{S})$ is an R-subalgebra of $\tilde{\Lambda}$ containing Λ , but is not necessarily an R-order of $\tilde{\Lambda}$. A subset \mathscr{S} will be called *cofaithful* if $\Lambda(\mathscr{S})$ is an R-order of $\tilde{\Lambda}$. In particular, a rejectable subset \mathscr{S} is always cofaithful. A subset \mathscr{S} will be called *trivial* if $\Lambda(\mathscr{S}) = \Lambda$. While a subset \mathscr{S} will be called *bounded* if the rational length $l(L) := \operatorname{length}_{\tilde{\Lambda}}(K \otimes_R L)$ is bounded on \mathscr{S} . When \mathscr{S} is a singleton set, there is known a criterion (= determinable necessary and sufficient condition) for \mathscr{S} to be rejectable, i.e. Rejection Lemma of Drozd-Kirichenko [DK].

- **1.1 D-K Rejection Lemma** $\mathcal{S} = \{P\}$ is rejectable if and only if P is bijective (= projective and injective) and $P \not\simeq \operatorname{rad} P$.
- 1.1.1 Utility of D-K Rejection Lemma was well exhibited in [DK] where it was applied for Bass orders, and more generally quasi-Bass orders in semi-simple K-algebras. Further, in [HN-1], it was applied for Bass orders in non-semi-simple K-algebras.
- 1.1.2 Hijikata [H] studied also almost Bass orders, which is defined as a Gorenstein order Λ such that $O_l(\operatorname{rad}\Lambda)$ is also Gorenstein. He has shown that very precise results for almost Bass orders (including classification) can be derived by D-K Rejection Lemma, and suggested a possibility to extend Rejection Lemma for $\mathcal S$ with more than two points. Notably, the result of [HN-2] shows that, excepting for a small number of them (counted in representation type), each local order Λ of finite representation type has a minimal rejectable subset $\mathcal S$ consisting of four points of a definite shape, whose $\Lambda(\mathcal S)$ is the unique minimal local overorder of Λ , and this is the reason, in a sense, why the Λ can be of finite representation type.