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Introduction.

Let $H_{n}(R)$ be the vector space of $n\cross n$ real symmetric matrices. The group
$GL(n, R)^{0}$ ($=the$ identity component of $GL(n,$ $R)$ ) acts on $H_{n}(R)$ by the rule: $X\mapsto AX^{t}A$ ,
$X\in H_{n}(R),$ $A\in GL(n, R)^{0}$ . The Sylvester’s law of inertia asserts that, by this action of
$GL(n, R)^{0},$ $X$ is transformed into the canonical form diag $(1, \ldots, 1, -1, \ldots, -1,0, \ldots, 0)$ ,
which is uniquely determined by $X$ . The simple Lie algebra $sp(n, R)$ has a unique gra-
dation $sp(n, R)=g_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ , where $\mathfrak{g}_{-1}=H_{n}(R)$ and $\mathfrak{g}_{0}\simeq \mathfrak{g}I(n, R)$ . The $GL(n, R)^{0}-$

module $H_{n}(R)$ is imbedded in $sp(n, R)$ as the $G_{0}^{0}$ -module $\mathfrak{g}_{-1}$ , where $G_{0}^{0}$ is the analytic
subgroup of Aut $\mathfrak{g}$ generated by $\mathfrak{g}_{0}$ . The Sylvester’s law of inertia for $H_{n}(R)$ is no other
than obtaining the complete representatives of $\theta_{0}$ -orbits in $\mathfrak{g}_{-1}$ . As a generalization of
this situation, one can pose:

PROBLEM. Let $\mathfrak{g}=\sum_{k=-\mathcal{V}}^{v}\mathfrak{g}_{k}$ be a real simple graded Lie algebra, $G_{0}$ the group of
grade-preserving automorphisms of $\mathfrak{g}$ and let $G_{0}^{0}$ be the identity component of $G_{0}$ . Find
the $G_{0}^{0}$ -orbit decomposition and the $G_{0}$ -orbit decomposition of $\mathfrak{g}_{-1}$ .

When $v=1$ , this problem is equivalent to the problem of finding the orbits in a
compact simple Jordan triple system under the structure group or the identity component
of the structure group. Also it is equivalent to finding the orbit decomposition of a
tangent space by the linear isotropy group for a symmetric R-space.

The purpose of this paper is to settle the above problem for the case $v=1$ by a uni-
fied method. Partial answers have been obtained by Satake $[22, 23]$ , Kaneyuki $[9, 10]$

and Takeuchi [27]. In the following we shall describe briefly how to get the two kinds
of orbit decompositions of $\mathfrak{g}_{-1}$ . The sections 1 and 2 are preliminary sections. We
give a quick review for the followings: classification and construction of gradations in
semisimple Lie algebras $[13,12]$ , the root theory in simple graded Lie algebras
$\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}([13])$ , the Jordan triple system 8 on $\mathfrak{g}_{-1}$ (Loos [18]) and the root-
theoretic version of a frame ( $=$ a maximal system of pairwise orthogonal idempotents)
$\{e_{1}, \ldots, e_{r}\}$ in $\mathfrak{g}_{-1}$ , and the Jordan algebra structure $\mathfrak{U}_{p}(0\leq p\leq r)$ in $\mathfrak{g}_{-1}$ . In \S 3,
applying a result of Matsumoto [19], we get a set of good representatives of $G_{0}mod G_{0}^{0}$ ,
which allows us to get the $G_{0}$ -orbit decomposition from the $G_{0}^{0}$-orbit decomposition.
We consider the root system $\Delta^{*}$ corresponding to a certain symmetric real flag domain
$M^{*}$ . It tums out that the Weyl group $W(\Delta^{*})$ of $\Delta^{*}$ , viewed as a subgroup of $G_{0}^{0}$ , acts on
the frame $\{e_{1}, \ldots, e_{r}\}$ as signed permutations. Then we can choose the candidates
$o_{p,q}(0\leq p, q\leq r,p+q\leq r)$ of representatives of the $G_{0}^{0}$ -orbits, which are defined in


