The Sylvester's law of inertia in simple graded Lie algebras

Dedicated to Professor Ichiro Satake on the occasion of his seventieth anniversally birthday

By Soji KANEYUKI

(Received Aug. 15, 1996)

Introduction.

Let $H_{n}(R)$ be the vector space of $n \times n$ real symmetric matrices. The group $GL(n, R)^{0}$ (= the identity component of $GL(n, R)$) acts on $H_{n}(R)$ by the rule: $X \mapsto AX^{t}A$, $X \in H_{n}(R)$, $A \in GL(n, R)^{0}$. The Sylvester's law of inertia asserts that, by this action of $GL(n, R)^{0}$, X is transformed into the canonical form diag $(1, \ldots, 1, -1, \ldots, -1,0, \ldots, 0)$, which is uniquely determined by X. The simple Lie algebra $\mathfrak{sp}(n, \mathbf{R})$ has a unique gradation $\mathfrak{sp}(n, R) = \mathfrak{g}_{-1} + \mathfrak{g}_{0} + \mathfrak{g}_{1}$, where $\mathfrak{g}_{-1} = H_{n}(R)$ and $\mathfrak{g}_{0} \simeq \mathfrak{gl}(n, R)$. The $GL(n, R)^{0}$ module $H_{n}(R)$ is imbedded in $\mathfrak{sp}(n, R)$ as the G_{0}^{0} -module \mathfrak{g}_{-1} , where G_{0}^{0} is the analytic subgroup of Aut g generated by g_{0} . The Sylvester's law of inertia for $H_{n}(R)$ is no other than obtaining the complete representatives of \mathcal{G}_{0}^{0} -orbits in \mathfrak{g}_{-1} . As a generalization of this situation, one can pose:

PROBLEM. Let $g=\sum_{k=-\nu}^{\nu}g_{k}$ be a real simple graded Lie algebra, G_{0} the group of grade-preserving automorphisms of g and let G_{0}^{0} be the identity component of G_{0} . Find the G_{0}^{0} -orbit decomposition and the G_{0} -orbit decomposition of \mathfrak{g}_{-1} .

When $v=1$, this problem is equivalent to the problem of finding the orbits in a compact simple Jordan triple system under the structure group or the identity component of the structure group. Also it is equivalent to finding the orbit decomposition of a tangent space by the linear isotropy group for a symmetric R-space.

The purpose of this paper is to settle the above problem for the case $v=1$ by a unified method. Partial answers have been obtained by Satake $[22, 23]$, Kaneyuki $[9, 10]$ and Takeuchi [27]. In the following we shall describe briefly how to get the two kinds of orbit decompositions of \mathfrak{g}_{-1} . The sections 1 and 2 are preliminary sections. We give a quick review for the followings: classification and construction of gradations in semisimple Lie algebras $[13,12]$, the root theory in simple graded Lie algebras $\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ ([13]), the Jordan triple system \mathfrak{B} on \mathfrak{g}_{-1} (Loos [18]) and the roottheoretic version of a frame $(= a$ maximal system of pairwise orthogonal idempotents) $\{e_{1}, \ldots, e_{r}\}$ in \mathfrak{g}_{-1} , and the Jordan algebra structure $\mathfrak{A}_{p}(0\leq p\leq r)$ in \mathfrak{g}_{-1} . In $\S 3$, applying a result of Matsumoto [19], we get a set of good representatives of G_{0} mod G_{0}^{0} , which allows us to get the G_{0} -orbit decomposition from the G_{0}^{0} -orbit decomposition. We consider the root system Δ^{*} corresponding to a certain symmetric real flag domain M^{*} . It turns out that the Weyl group $W(\Delta^{*})$ of Δ^{*} , viewed as a subgroup of G_{0}^{0} , acts on the frame $\{e_{1}, \ldots, e_{r}\}$ as signed permutations. Then we can choose the candidates $o_{p,q}(0\leq p, q\leq r, p+q\leq r)$ of representatives of the G_{0}^{0} -orbits, which are defined in