Grassmann geometries on compact symmetric spaces of general type

By Hiroo Naitoh*

(Received Sept. 6, 1995) (Revised July 3, 1996)

Introduction.

This study is a continuation of my papers [12], [13] and [14]. Let M be a compact simply connected riemannian symmetric space of dimension $m (\geq 2)$, and s an integer such that $1 \leq s \leq m$. Let $G^s(T_pM)$ be the set of s-dimensional linear subspaces in a tangent space T_pM and denote by $G^s(TM)$ the Grassmann bundle over M with fibres $G^s(T_pM)$. For an arbitrary subset \mathscr{V} in $G^s(TM)$ an s-dimensional connected submanifold S of M is called a \mathscr{V} -submanifold if at each point p of S the tangent space T_pS belongs to \mathscr{V} . The collection of \mathscr{V} -submanifolds, denoted by $\mathscr{S}(M, \mathscr{V})$, constitutes a \mathscr{V} -geometry. The term "Grassmann geometries" in the title is a collected name for such \mathscr{V} -geometries and it has been introduced in R. Harvey-H. B. Lawson [4].

We now consider the following \mathscr{V} -geometries. Let G be the isometry group of M. Then it acts transitively on M and at the same time acts on $G^s(TM)$ via the differentials of isometries. If as a subset \mathscr{V} we take a G-orbit on $G^s(TM)$ by this action, the \mathscr{V} geometry gives a class of submanifolds in M with congruent tangent spaces.

We moreover consider G-orbits of the following type. An s-dimensional linear subspace V in T_pM is called strongly curvature-invariant if it satisfies that

$$R_p(V, V)V \subset V$$
 and $R_p(V^{\perp}, V^{\perp})V^{\perp} \subset V^{\perp}$,

where R denotes the curvature tensor on M and V^{\perp} denotes the orthogonal complement of V in T_pM . We consider a G-orbit \mathscr{V} through such a subspace V. The \mathscr{V} -geometry is also said to be of strongly curvature-invariant type. By a result on symmetric space a \mathscr{V} -geometry of strongly curvature-invariant type has a unique compact totally geodesic \mathscr{V} -submanifold, except the difference by isometries.

In the previous papers we have treated the cases that G is a simple Lie group, and have decided the \mathscr{V} -geometries which admit non-totally geodesic \mathscr{V} -submanifolds. In the present paper we treat a general case that the Lie group G is not necessarily simple, and we obtain a decomposition theorem for \mathscr{V} -submanifolds, thus, for \mathscr{V} -geometries of strongly curvature-invariant type. The theorem will clarify the structure of \mathscr{V} geometries of strongly curvature-invariant type, and as a result it will give the classification of symmetric submanifolds in a general compact simply connected riemannian symmetric space.

^{*} Partially supported by the Grant-in-aid for Scientific Research, No.06640147