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1. Introduction.

Let $M^{n+1}$ be a complete Riemannian manifold with boundary $\partial M=:B\neq\emptyset$ which
is a union of smooth hypersurfaces. We can see the precise definition of manifolds with
boundary as billiard tables in [17]. Let $q\in B$ be an arbitrary point at which $B$ is
smooth and $Q_{q}$ the symmetry with respect to $T_{q}B$ , i.e.,

$Q_{q}(w)=w-2\langle w, N(q)\rangle N(q)$

for any $w\in T_{q}M$ , where $\langle\cdot, \cdot\rangle$ is the Riemannian metric in $M$ and $N$ is the unit normal
vector field to $B$ pointing inward. We say that $\gamma$ : $[a, b]arrow M$ is a reflecting geodesic or
briefly a geodesic if there exists the partition $a=a_{0}<a_{1}<\cdots<a_{m}=b$ such that

(1.1) $\gamma(a_{i})\in B,$ $B$ is smooth at $\gamma(a_{i})$ and $\dot{\gamma}(a_{i}-0)\not\in T_{\gamma(a_{i})}B$ for $i=1,2,$
$\ldots,$

$m-1$ .

(1.2) $\gamma_{i}=\gamma|[a_{i-l}, a_{i}]$ is a geodesic in $M$ in the usual sense for $i=1,2,$
$\ldots,$

$m$ .

(1.3) $Q(\dot{\gamma}(a_{i}-0))=\dot{\gamma}(a_{i}+0)$ for $i=1,2,$
$\ldots,$

$m-1$ .

Throughout the paper the term “geodesic” means both usual one and reflecting
one. We assume that geodesics are parametrized by arclength. As usual a variation of
a geodesic $\gamma$ through geodesics yields a Jacobi vector field $Y$ along $\gamma$ which satisfies the
following properties at the boundary (see Section 2):

(1.4) $Q(Y(a_{i}-0))=Y(a_{i}+0)$

(1.5) $Q(V_{\gamma(a_{i}-0)}Y)-V_{\gamma(a_{l}+0)}Y=A(\dot{\gamma}(a_{i}+0))(Y^{\perp}(a_{i}+0))$

where $A(\dot{\gamma}(a_{i}+0))$ is a symmetric endomorphism of $n$-dimensional subspace ab $(a_{i}+0)^{\perp}$

of $T_{\gamma(a_{i})}M$ which is perpendicular to $\dot{\gamma}(a_{i}+0)$ and $V$ is the Levi-Civita connection. We
say that $\gamma(t_{1}),$ $t_{0}\neq t_{1}\in[a, b]$ , is a conjugate point to $\gamma(t_{0}),$ $t_{0}\in[a, b]$ , if there exists a
nontrivial Jacobi vector field $Y$ along $\gamma$ with $Y(t_{0})=Y(t_{1})=0$ .

Let $T_{1}M$ be the unit tangent bundle of $M$ . For a $v\in T_{1}M$ let $\gamma_{v}$ be the geodesic
with $\dot{\gamma}_{v}(0)=v$ . If $\pi(v)\in B$ where $\pi$ : $T_{1}Marrow M$ is the natural projection, then $\dot{\gamma}_{v}(0)$ is
considered either $\dot{\gamma}_{v}(+0)$ or $\dot{\gamma}_{v}(-0)$ . The geodesics $\gamma_{v}$ are defined on the whole real line
$(-\infty, \infty)$ for almost all $v\in T_{1}M$ . We denote the set of all such vectors by $SM$ . Let

$f^{t}$ : $SMarrow SM$ be a flow given by $f^{t}v=\dot{\gamma}_{v}(t)$ for any $v\in SM$ . We denote the set of all


