Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical exponent

By Juncheng WEI

(Received Sept. 7, 1994) (Revised Jan. 22, 1996)

1. Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^n with $n \ge 3$ and p = (n+2)/(n-2) (the Sobolev exponent). Consider the problem

(1.1)
$$\begin{cases} -\Delta u = u^{p-\varepsilon} \text{ in } \Omega, \\ u > 0 \text{ in } \Omega, \\ u \mid_{\partial \Omega} = 0, \end{cases}$$

where $\varepsilon > 0$. It is well-known that when $\varepsilon > 0$, problem (1.1) has at least one solution. On the other hand, when $\varepsilon = 0$, problem (1.1) becomes delicate. Pohozaev [12] derived the so-called "Pohozaev identity" for (1.1) and showed the nonexistence of solutions to (1.1) when Ω is star-shaped. In other cases, Bahri and Coron [2] showed that there exists a solution for equation (1.1) when Ω has a nontrivial topology, while Ding [D] constructed a solution to (1.1) when Ω is contractible. Here arises an interesting question: what happens to the solutions of (1.1) as $\varepsilon \to 0$? The first result was due to Atkinson and Peletier in [1]. They studied the radial case and characterized the asymptotic behavior of radial solutions. Later, Brezis and Peletier [3] used PDE methods to give another proof of the same result in spherical domains. Finally, Z. Han [9] (independently by O. Rey [13]) proved the same result in the general case, namely:

THEOREM A. Let u_{ε} be a solution of problem (1.1) and assume

$$\frac{\int_{\Omega} |\nabla u_{\varepsilon}|^2}{\|u_{\varepsilon}\|_{L^{p+1-\varepsilon}(\Omega)}^2} = S + o(1) \quad \text{as } \varepsilon \to 0,$$

where S is the best Sobolev constant in \mathbb{R}^n : $S = \pi n(n-2)(\Gamma(n/2)^{n/2}/\Gamma(n))$. Suppose u_{ε} assumes its maximum at x_{ε} . Then we have (after passing to a subsequence):

1. There exists $x_0 \in \Omega$ such that as $\varepsilon \to 0$, $x_{\varepsilon} \to x_0$, $u_{\varepsilon} \to 0$ in $C^1_{loc}(\bar{\Omega} \setminus \{x_0\})$ and $|\nabla u_{\varepsilon}|^2 \to (n(n-2))^{-(n-2)/4} \delta_{x_0}$ in the sense of distribution, where δ_{x_0} is the Dirac function at point x_0 .