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Introduction.

It is rewarding to investigate riemannian manifolds with completely integrable
geodesic flows, because the behavior of their geodesics can be observed.

In the 19th century, Jacobi investigated the 2-dimensional ellipsoid, and
Liouville generalized this work to the geometry of a class of metrics, the
so-called Liouville line elements, whose geodesic flows are integrable by a certain
first integral. In relation to the present viewpoint, their investigations can be
recognized as a local theory of differential geometry. However, in 1991 K.
Kiyohara began to develop a global theory in this area [1]. In this work he
first defined the compact Liouville surface and classified it; it is defined as a
compact 2-dimensional riemannian manifold whose geodesic flow has a first
integral on the cotangent bundle such that (1) the first integral is fiberwise a
homogeneous polynomial of degree 2; (2) the first integral can not be expressed
as a linear combination of the square of a certain vector field and its energy
function. Additionally, K. Sugahara, K. Kiyohara and the author investigated
noncompact Liouville surfaces [2]. Subsequently, Kiyohara generalized this
concept to the higher dimensional manifolds (see [3] for detail) as follows:

A Liouville manifold is defined as a riemannian manifold which has a real
vector space of the first integrals on the cotangent bundle of its geodesic flows
such that (1) all the first integrals are fiberwise homogeneous polynomials of
degree 2; (2) all the first integrals are simultaneously normalizable on each
fiber; (3) the dimension of the vector space is equal to the dimension of the
underlying riemannian manifold.

In the investigation [3] of Liouville manifolds, Kiyohara has assumed the
condition of “properness,” and has classified proper Liouville manifolds of rank
one ; he has concluded that a proper 4-dimensional real Liouville manifoid of
rank one is diffeomorphic with the sphere S* the real projective space RP* or
the euclidean space R*,

It is known that the geodesic flow of the n-dimensional complex projective
space CP" (n=1) equipped with the standard metric is completely integrable
(cf. [4], [6]). The author was informed by private communication with Prof.
K. Kiyohara that there is a family of Kidhler metrics on CP" whose geodesic



