On compact Kähler-Liouville surfaces

By Masayuki IGARASHI

(Received May 10, 1995)

Introduction.

It is rewarding to investigate riemannian manifolds with completely integrable geodesic flows, because the behavior of their geodesics can be observed.

In the 19th century, Jacobi investigated the 2-dimensional ellipsoid, and Liouville generalized this work to the geometry of a class of metrics, the so-called Liouville line elements, whose geodesic flows are integrable by a certain first integral. In relation to the present viewpoint, their investigations can be recognized as a local theory of differential geometry. However, in 1991 K. Kiyohara began to develop a global theory in this area [1]. In this work he first defined the compact Liouville surface and classified it; it is defined as a compact 2-dimensional riemannian manifold whose geodesic flow has a first integral on the cotangent bundle such that (1) the first integral is fiberwise a homogeneous polynomial of degree 2; (2) the first integral can not be expressed as a linear combination of the square of a certain vector field and its energy function. Additionally, K. Sugahara, K. Kiyohara and the author investigated noncompact Liouville surfaces [2]. Subsequently, Kiyohara generalized this concept to the higher dimensional manifolds (see [3] for detail) as follows:

A Liouville manifold is defined as a riemannian manifold which has a real vector space of the first integrals on the cotangent bundle of its geodesic flows such that (1) all the first integrals are fiberwise homogeneous polynomials of degree 2; (2) all the first integrals are simultaneously normalizable on each fiber; (3) the dimension of the vector space is equal to the dimension of the underlying riemannian manifold.

In the investigation [3] of Liouville manifolds, Kiyohara has assumed the condition of "properness," and has classified proper Liouville manifolds of rank one; he has concluded that a proper 4-dimensional real Liouville manifold of rank one is diffeomorphic with the sphere S^4 , the real projective space $\mathbb{R}P^4$ or the euclidean space \mathbb{R}^4 .

It is known that the geodesic flow of the *n*-dimensional complex projective space CP^n $(n \ge 1)$ equipped with the standard metric is completely integrable (cf. [4], [5]). The author was informed by private communication with Prof. K. Kiyohara that there is a family of Kähler metrics on CP^n whose geodesic