Gradient estimates for a quasilinear parabolic equation of the mean curvature type

By Mitsuhiro NAKAO and Yasuhiro OHARA

(Received Sept. 7, 1994)

1. Introduction.

In this paper we are concerned with the gradient estimates of solutions to the initial boundary value problem of the quasilinear parabolic equation

$$u_t - div \{ \sigma(|\nabla u|^2) \nabla u \} = 0 \quad \text{in } \Omega \times [0, \infty), \tag{1.1}$$

$$u(x, 0) = u_0(x)$$
 and $u(x, t)|_{\partial \Omega} = 0$ for $t \ge 0$, (1.2)

where Ω is a bounded domain in \mathbb{R}^N with a smooth, say C^s class, boundary $\partial \Omega$ and $\sigma(v)$ is a function like $\sigma(v)=1/\sqrt{1+v}$.

When $\sigma(v) = |v|^{(p-2)/2}$, $p \ge 2$, Alikakos and Rostamian [1] derived an estimate for $||\nabla u(t)||_{\infty}$ for the solutions of the equation with Neumann boundary condition, which includes a smoothing effect and decay properties. The argument can be applied to the case of Dirichlet problem. In [1], a strong coerciveness condition on $-div \{\sigma(|\nabla u|^2)\nabla u\}$ is used essentially and the mean curvature type nonlinearity $\sigma(v)=1/\sqrt{1+v}$ is excluded.

Recently, Engler, Kawohl and Luckhaus [2] have treated the problem (1.1)-(1.2) for a class of $\sigma(v)$ including $\sigma(v) = |v|^{(p-2)/2}$ and $1/\sqrt{1+v}$ and derived estimates for $||\nabla u(t)||_q$, in particular if $\sigma'(v) \ge \varepsilon_0 > 0$, the decay estimate

$$\|\nabla u(t)\|_q \leq \|\nabla u_0\|_q e^{-\lambda t}, \quad \lambda > 0, \qquad (1.3)$$

for any $q \ge 2$. In [2], however, no result concerning smoothing effect nor decay estimate for $\|\nabla u(t)\|_{\infty}$ is given.

The object of this paper is to derive an estimate for $\|\nabla u(t)\|_{\infty}$ to the problem (1.1)-(1.2) with $\sigma(v)$ like $1/\sqrt{1+v}$. Our result includes both of smoothing effect and exponential decay. More precisely, we prove

$$\|\nabla u(t)\|_{\infty} \leq C \|\nabla u_0\|_{p_0} t^{-\mu} e^{-\lambda t}$$

$$(1.4)$$

for $p_0 > 3N/2$ ($p_0 \ge 3$ if N=1), where λ is a positive constant and $\mu = N/(2p_0 - 3N)$.

As in [1] and [2] (see Serrin [9]) we make a certain geometric condition on $\partial \Omega$, which is essential for our argument. Such a condition is useful even for some type of quasilinear wave equations ([6]).