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1. Introduction.

In this paper we are concerned with the gradient estimates of solutions to
the initial boundary value problem of the quasilinear parabolic equation

$u_{t}-div\{\sigma(|\nabla u|^{2})\nabla u\}=0$ in $\Omega\cross[0, \infty)$ , (1.1)

$u(x, 0)=u_{0}(x)$ and $u(x, t)|_{\partial\Omega}=0$ for $t\geqq 0$ , (1.2)

where $\Omega$ is a bounded domain in $R^{N}$ with a smooth, say $C^{3}$ class, boundary $\partial\Omega$

and $\sigma(v)$ is a function like $\sigma(v)=1/\sqrt{1+v}$ .
When $\sigma(v)=|v|^{(p-2)/2},$ $p\geqq 2$ , Alikakos and Rostamian [1] derived an estimate

for $||\nabla u(t)||_{\infty}$ for the solutions of the equation with Neumann boundary condition,
which includes a smoothing effect and decay properties. The argument can be
applied to the case of Dirichlet problem. In [1], a strong coerciveness condition
on $-div\{\sigma(|\nabla u|^{2})\nabla u\}$ is used essentially and the mean curvature type nonlinearity
$\sigma(v)=1/\sqrt{1+v}$ is excluded.

Recently, Engler, Kawohl and Luckhaus [2] have treated the problem $(1.1)-$

(1.2) for a class of $\sigma(v)$ including $\sigma(v)=|v|^{(p-2)/2}$ and $1/\sqrt{1+v}$ and derived
estimates for $||\nabla u(t)||_{q}$ , in particular if $\sigma’(v)\geqq\epsilon_{0}>0$, the decay estimate

$||\nabla u(t)||_{q}\leqq||\nabla u_{0}||_{q}e^{-\lambda t}$ , $\lambda>0$ , (1.3)

for any $q\geqq 2$ . In [2], however, no result concerning smoothing effect nor decay
estimate for $||\nabla u(t)||_{\infty}$ is given.

The object of this paper is to derive an estimate for $||\nabla u(t)||_{\infty}$ to the problem
$(1.1)-(1.2)$ with $\sigma(v)$ like $1/\sqrt{1+v}$ . Our result includes both of smoothing effect
and exponential decay. More precisely, we prove

$||\nabla u(t)||_{\infty}\leqq C||\nabla u_{0}||_{p_{0}}t^{-\mu}e^{-\lambda t}$ (1.4)

for $p_{0}>3N/2$ ( $p_{0}\geqq 3$ if $N=1$), where $\lambda$ is a positive constant and $\mu=N/(2p_{0}-3N)$ .
AS in [1] and [2] (see Serrin [9]) we make a certain geometric condition on

$\partial\Omega$ , which is essential for our argument. Such a condition is useful even for
some type of quasilinear wave equations ([6]).


