J. Math. Soc. Japan Vol. 48, No. 1, 1996

On the quantization of a coherent family of representations at roots of unity

By Rajagopalan PARTHASARATHY

(Received May 17, 1993) (Revised April 25, 1994)

1.

Given a coherent family of virtual representations of a complex semisimple Lie algebra we associate a coherent family of virtual representations of the corresponding quantum group at roots of unity. The latter family depends on the given family in a precise fashion described below.

Let g be a finite dimensional complex semisimple Lie algebra and let U be its universal enveloping algebra. Lusztig considered a certain $C[v, v^{-1}]$ algebra $U_{\mathcal{A}}$, $\{\mathcal{A}=C[v, v^{-1}]\}$ which is an \mathcal{A} -form of the 'quantum group' $U_{\mathcal{A}'}$, $\{\mathcal{A}'=C(v),$ the field of fractions of $\mathcal{A}\}$; the latter are some Hopf-algebra deformations of U, defined by Drinfeld and Jimbo generalizing the case of \mathfrak{Sl}_2 .

Let $\lambda \in C^*$ and suppose that λ is a primitive *l*-th root of unity where *l*, (≥ 3), is an odd positive integer (not divisible by 3 if G_2 is a factor of g).

Let $\varphi_{\lambda} : \mathcal{A} \to C$ be the *C*-algebra homomorphism obtained by sending v to λ . The algebras $U_{\lambda} := U_{\mathcal{A}} \otimes_{\mathcal{A}} C$, (scalar multiplication by $u \in \mathcal{A}$ in the first factor corresponds to scalar multiplication by $\varphi_{\lambda}(u)$ in the second factor) are called 'quantum groups at roots of unity'; these are different from those considered by Kac, Processi and De-Concini. The algebras U_{λ} are also Hopf algebras.

In [L1, Prop. 7.5(a) and L2, 8.16] Lusztig defines a 'Frobenius' morphism $\phi: U_{\lambda} \rightarrow U; \phi$ is a surjection and respects the Hopf-algebra structure.

2. Coherent family of virtual representations of U, U_{λ} .

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . Let Δ be the set of roots of \mathfrak{g} with respect to \mathfrak{h} and Δ^+ a system of positive roots. Let $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be the set of simple roots in Δ^+ . Let $\Lambda \subseteq \mathfrak{h}^*$ (=Hom_c(\mathfrak{h}, C)) be the integral lattice defined by

$$u \in \Lambda \Longleftrightarrow 2(
u, \alpha)/(\alpha, \alpha) \in \mathbf{Z}, \quad \forall \alpha \in \Delta$$

where the pairing is induced by the Killing form in the usual way.