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1. Introduction.

For a totally disconnected compact set $E$ in the extended $z$-plane $\hat{C}$ , we
denote by $M_{E}$ the totality of meromorphic functions each of which is defined
in the domain comPlementary to $E$ and has $E$ as the set of transcendental
singularities. A meromorphic function $f(z)$ of $M_{E}$ is said to be exceptionally
ramified at a singularity $\zeta\in E$ , if there exist values $w_{i},$ $1\leqq i\leqq q$ , and positive
integers $\nu_{i}\geqq 2$ , l$i$q, with

$\sum_{i=1}^{q}(1-\frac{1}{\nu_{i}})>2$ ,

such that, in some neighborhood of $\zeta$ , the multiplicity of any $w_{i}$-point of $f(z)$

is not less than $v_{i}$ . Recently, we have shown that, for Cantor sets $E$ with
successive ratios $\{\xi_{n}\}$ satisfying $\xi_{n+1}=o(\xi_{n}^{2})$ , any function of $M_{E}$ cannot be excep-
tionally ramified at any singularity $\zeta\in E$(Theorem in [5]). The capacity (in

this note, capacity means always logarithmic capacity) of these Cantor sets $E$

is zero, because they satisfy the necessary and sufficient condition

$\sum_{n=1}^{\infty}\frac{1}{2^{n}}\log\frac{1}{\xi_{n}}=\infty$

to be of capacity zero.
The purpose of this note is to give Cantor sets $E$ of positive capacity im-

proving the above theorem. We shall prove

THEOREM. Let $E$ be a Cantor set with successive ratios $\{\xi_{n}\}$ satisfying the
condition

$\xi_{n+1}=o(\xi_{n}^{r_{0}})$ , $r_{0}=(1+\sqrt 33)/4$ ,

then any function of $M_{E}$ cannot be excePtionally ramified at any srngularity $\zeta\in E$ .

We set $\xi_{n+1}=\xi_{n}^{r}$ $(n=1,2,3, -)$ with $r,$ $r_{0}<r<2$ . Then $\{\xi_{n}\}$ satisfies the
condition of the $theorem$ and


