Embedded flat tori in the unit 3-sphere

By Yoshihisa KITAGAWA

(Received Dec. 4, 1992) (Revised Aug. 9, 1993)

1. Introduction.

Let S^3 be the unit hypersphere in the 4-dimensional Euclidean space E^4 given by $\sum_{i=1}^{4} x_i^2 = 1$. For each θ with $0 < \theta < \pi/2$, we consider a surface M_{θ} in S^3 defined by

$$x_1^2 + x_2^2 = \cos^2 \theta$$
, $x_3^2 + x_4^2 = \sin^2 \theta$.

The surface M_{θ} , which is called a Clifford torus in S^3 , can be viewed as an embedded flat torus in S^3 . There are many other examples of embedded flat tori in S^3 . Let $p: S^3 \rightarrow S^2$ be the Hopf fibration, and let γ be a simple closed curve in S^2 . Then it is known [4] that the inverse image $p^{-1}(\gamma)$ is an embedded flat torus in S^3 . Note that $p^{-1}(\gamma)$ is foliated by great circles of S^3 , and so it satisfies the *antipodal symmetry*, i.e., it is invariant under the antipodal map of S^3 . Although this example contains no great circle of S^3 , it also satisfies the antipodal symmetry. In this paper we show that the antipodal symmetry holds for all embedded flat tori in S^3 . In other words, we prove the following theorem.

THEOREM 1.1. If $f: M \rightarrow S^3$ is an isometric embedding of a flat torus M into S^3 , then the image f(M) is invariant under the antipodal map of S^3 .

REMARK. In Theorem 1.1 the word "embedding" cannot be replaced by "immersion". In fact, Theorem 4.4 says that there exists a flat torus M and an isometric immersion $f: M \rightarrow S^3$ such that the image f(M) is not invariant under the antipodal map of S^3 . However the author does not know the answer to the following question: For every isometric immersion f of a flat torus M into S^3 , does there exist a pair of points p and q in M such that f(p) and f(q) are antipodal points of S^3 ?

The outline of this paper is as follows. Let SU(2) be the group of all 2×2 unitary matrices with determinant 1. Then SU(2), endowed with a bi-invariant metric, is isometric to S^3 . Using the group structure on S^3 , we define a