Erratum to "Indivisibility of class numbers of totally imaginary quadratic extensions and their Iwasawa invariants"

[This JOURNAL, Vol. 43 (1991), 185-194]

By Hirotada NAITO

(Received May 6, 1994)

The author was kindly informed by Professor M. Ohta that there is the following mistake in the proof of Proposition in § 4, which we needed only to verify numerical examples. Namely, in p. 192 1. 38, \mathfrak{o}_k does not appear in \mathcal{Q}_0 , if some of $\mathfrak{r}_1, \dots, \mathfrak{r}_s$ split completely in k/F. Therefore we could not prove $\mathrm{tr}.\mathfrak{T}((N)) \not\equiv 0 \mod l^{e_F+1}$ in p. 193 1. 11.

The author could not recover the proof of it. Consequently, Proposition is not proved. But we recover numerical examples.

Let l and p be primes such that $3 \le l \le 73$, $p \le 17389$ and $p \equiv 1 \mod 4$. We put $F = Q(\sqrt{p})$. We verify that F has infinitely many totally imaginary quadratic extensions whose relative class numbers are not divisible by l, even if l divides $w_F \zeta_F(-1)$.

Let $q \ge 5$ be a prime. We denote by h(-q) (resp. h(-pq)) the class number of $\mathbf{Q}(\sqrt{-q})$ (resp. $\mathbf{Q}(\sqrt{-pq})$). We can search by using UBASIC86 written by Y. Kida a prime $q \ne p$, l and an element α in the ring \mathfrak{o}_q of integers of $\mathbf{Q}(\sqrt{-q})$ with the following properties:

- (1) h(-q) and h(-pq) are prime to l,
- (2) (α) is a prime ideal in \mathfrak{o}_q ,
- (3) $Z[\alpha] = \mathfrak{o}_q$,
- (4) $N=\alpha\bar{\alpha}$ remains prime in F/Q and $N\neq l$,
- (5) $\alpha^2 + \alpha \bar{\alpha} + \bar{\alpha}^2$ is prime to l in the case of $l \neq 3$.

In the above, $\bar{\alpha}$ stands for the complex conjugation of α .

We put $k=F(\sqrt{-q})$. Let \mathfrak{o}_F (resp. \mathfrak{o}_k) be the ring of integers of F (resp. k). We take a division quaternion algebra B/F satisfying (i), (iii), (iv), (v) as in p. 192 and

(ii)'
$$\mathfrak{p}_1'$$
, ..., \mathfrak{p}_t' are ramified in B/F .

We see that only the orders of k do appear in Ω_0 . Since the discriminant of F and that of $Q(\sqrt{-q})$ are prime to each other, we get $\mathfrak{o}_k = \mathfrak{o}_F \cdot \mathfrak{o}_q$ by Satz 88 in Zahlbericht of D. Hilbert (Gesammelte Abhandlungen I, Chelsea). Thus