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1. Introduction.

In this paper we study smooth maps $f:M^{n}arrow N^{p}$ of $n$ -manifolds into P-
manifolds $(n\geqq P)$ having only fold singular points and find some obstructions to
the existence of such maps. In [15], Thom showed that, for generic maps
$f:M^{n}arrow R^{2}(n\geqq 2)$ , the number of cusp singular points has the same parity as
the euler number of $M^{n}$ (see also [7]); in particular, there are no smooth maps
$f:M^{n}arrow R^{2}$ having only fold singular points if the euler number of $M^{n}$ is odd.
Thom also showed that if $n-p+1$ is odd and the $(n-p+2)$-th Stiefel-Whitney
class of $M^{n}$ is non-zero, then there are no smooth maps $f:M^{n}arrow R^{p}$ having
only fold singular points. Our main results of this paper are some generaliza-
tions of Thom’s results.

In \S 3, we shall show the following.

THEOREM 1. Let $M^{n}$ be a closed manifold with odd euler number and $N^{p}$ an
even-dimensional manifold with $w_{p-1}(N^{p})=0$ and $w_{p}(N^{p})=0(n\geqq P\geqq 2)$ , where
$w_{i}(N^{p})\in H^{i}(N^{p} ; Z/2Z)$ denotes the i-th Stiefel-Whitney class of $N^{p}$ . Then there
exist no smooth maps $f:M^{n}arrow N^{p}$ having only fold singular points.

THEOREM 2. Let $N^{p}$ be a stably parallelizable manifold. Suppose that $n-$

$p+1(\geqq 1)$ is odd and that $w_{i}(M^{n})\neq 0$ for some $i\geqq n-p+2$ . Then there exist no
smooth maPs $f$ : $M^{n}arrow N^{p}$ having only fold singular Points.

Theorems 1 and 2 are consequences of a more general result (Proposition

3.2), which we shall prove by directly constructing a certain bundle map $\varphi$ :
$TM^{n}\oplus\epsilon^{1}arrow TN^{p}$ , where $\epsilon^{1}$ is the trivial line bundle over $M^{n}$ . Unfortunately,
Theorems 1 and 2 do not hold if $n-p+1$ is even. In fact, we shall give an
explicit example of a smooth map $f:M^{4}arrow R^{3}$ with only fold singular Points
such that $M^{4}$ has odd euler number (Example 3.7). However, if we restrict
ourselves to simple maps, we have the following.

THEOREM 3. Let $M^{n}$ be a closed orientable manifold with odd euler number
and $N^{p}$ an orientable manifold with $w_{p-1}(N^{p})=0$ and $w_{p}(N^{p})=0(n\geqq P\geqq 2)$ . Then


