J. Math. Soc. Japan Vol. 44, No. 3, 1992

Notes on the topology of folds

Dedicated to Professor Haruo Suzuki on his 60th birthday

By Osamu SAEKI

(Received Sept. 17, 1991)

1. Introduction.

In this paper we study smooth maps $f: M^n \to N^p$ of *n*-manifolds into *p*-manifolds $(n \ge p)$ having only fold singular points and find some obstructions to the existence of such maps. In [15], Thom showed that, for generic maps $f: M^n \to \mathbb{R}^2(n \ge 2)$, the number of cusp singular points has the same parity as the euler number of M^n (see also [7]); in particular, there are no smooth maps $f: M^n \to \mathbb{R}^2$ having only fold singular points if the euler number of M^n is odd. Thom also showed that if n-p+1 is odd and the (n-p+2)-th Stiefel-Whitney class of M^n is non-zero, then there are no smooth maps $f: M^n \to \mathbb{R}^p$ having only fold singular points of this paper are some generalizations of Thom's results.

In §3, we shall show the following.

THEOREM 1. Let M^n be a closed manifold with odd euler number and N^p an even-dimensional manifold with $w_{p-1}(N^p)=0$ and $w_p(N^p)=0$ $(n \ge p \ge 2)$, where $w_i(N^p) \in H^i(N^p; \mathbb{Z}/2\mathbb{Z})$ denotes the *i*-th Stiefel-Whitney class of N^p . Then there exist no smooth maps $f: M^n \to N^p$ having only fold singular points.

THEOREM 2. Let N^p be a stably parallelizable manifold. Suppose that $n-p+1(\geq 1)$ is odd and that $w_i(M^n)\neq 0$ for some $i\geq n-p+2$. Then there exist no smooth maps $f: M^n \rightarrow N^p$ having only fold singular points.

Theorems 1 and 2 are consequences of a more general result (Proposition 3.2), which we shall prove by directly constructing a certain bundle map φ : $TM^n \oplus \varepsilon^1 \rightarrow TN^p$, where ε^1 is the trivial line bundle over M^n . Unfortunately, Theorems 1 and 2 do not hold if n-p+1 is even. In fact, we shall give an explicit example of a smooth map $f: M^4 \rightarrow \mathbb{R}^3$ with only fold singular points such that M^4 has odd euler number (Example 3.7). However, if we restrict ourselves to simple maps, we have the following.

THEOREM 3. Let M^n be a closed orientable manifold with odd euler number and N^p an orientable manifold with $w_{p-1}(N^p)=0$ and $w_p(N^p)=0$ $(n \ge p \ge 2)$. Then