Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in R^N

Dedicated to Professor Takeshi Kotake on his 60th birthday

By Kiyoshi MOCHIZUKI and Ryuichi SUZUKI

(Received Nov. 6, 1990) (Revised Aug. 13, 1991)

Introduction.

In this paper we shall consider the Cauchy problem

(0.1)
$$\partial_t \beta(u) = \Delta u + f(u) \quad \text{in} \quad (x, t) \in \mathbb{R}^N \times (0, T),$$

$$(0.2) u(x,0) = u_0(x) \text{in } x \in \mathbf{R}^N,$$

where $\partial_t = \partial/\partial t$, Δ is the N-dimensional Laplacian and $\beta(v)$, f(v) with $v \ge 0$ and $u_0(x)$ are nonnegative functions.

Equation (0.1) describes the combustion process in a stationary medium, in which the thermal conductivity $\beta'(u)^{-1}$ and the volume heat source f(u) are depending in a nonlinear way on the temperature $\beta(u) = \beta(u(x, t))$ of the medium.

Throughout this paper we assume

- (A1) $\beta(v)$, $f(v) \in C^{\infty}(\mathbf{R}_{+}) \cap C(\mathbf{\bar{R}}_{+})$, where $\mathbf{R}_{+} = (0, \infty)$ and $\mathbf{\bar{R}}_{+} = [0, \infty)$; $\beta(v) > 0$, $\beta'(v) > 0$, $\beta''(v) \leq 0$ and f(v) > 0 for v > 0; $\lim_{v \to \infty} \beta(v) = \infty$; $f \circ \beta^{-1}$ is locally Lipschitz continuous in $[\beta(0), \infty)$.
- (A2) $u_0(x) \ge 0$, $\ne 0$ and $\in B(\mathbf{R}^N)$ (bounded continuous in \mathbf{R}^N).

With these conditions the above Cauchy problem has a unique local solution u(x, t) (in time) which satisfies (0.1) in $\mathbb{R}^N \times (0, T)$ in the following weak sense (see e.g., Oleinik et al. [17]), where T > 0 is assumed sufficiently small.

DEFINITION 1. Let G be a domain in \mathbb{R}^N . By a solution of equation (0.1) in $G \times (0, T)$ we mean a function u(x, t) such that

- 1) $u(x, t) \ge 0$ in $\overline{G} \times [0, T)$, and $\in B(\overline{G} \times [0, \tau])$ for each $0 < \tau < T$.
- 2) For any bounded domain $\Omega \subset G$, $0 < \tau < T$ and nonnegative $\varphi(x, t) \in C^2(\bar{\Omega} \times [0, T))$ which vanishes on the boundary $\partial \Omega$,

(0.3)
$$\int_{\Omega} \beta(u(x,\tau))\varphi(x,\tau)dx - \int_{\Omega} \beta(u(x,0))\varphi(x,0)dx$$
$$= \int_{0}^{\tau} \int_{\Omega} \{\beta(u)\partial_{t}\varphi + u\Delta\varphi + f(u)\varphi\} dx dt - \int_{0}^{\tau} \int_{\partial\Omega} u\partial_{n}\varphi dS dt,$$