On regular subalgebras of Kac-Moody algebras and their associated invariant forms ——Symmetrizable case—

By Satoshi NAITO

(Received Jan. 17, 1991)

Introduction.

In [3], Dynkin classified all the semi-simple subalgebras of finite dimensional complex semi-simple Lie algebras. There, a special kind of subalgebras with compatible root space decompositions, called *regular semi-simple subalgebras*, played an important role.

In this paper, we treat a Kac-Moody algebra with a symmetrizable generalized Cartan matrix (=GCM), and study its *regular subalgebras*, defined as a natural infinite dimensional analogue of Dynkin's ones. Though being no more isomorphic to Kac-Moody algebras in general, these regular subalgebras are isomorphic to generalized Kac-Moody algebras (=GKM algebras) introduced by Borcherds [1].

We now give a constructive definition of regular subalgebras. Let $\mathfrak{g}(A)$ be a Kac-Moody algebra with a symmetrizable GCM A, \mathfrak{h} be a Cartan subalgebra of $\mathfrak{g}(A)$, and Δ be the root system of $\mathfrak{g}(A)$. A subset $\{\beta_1, \dots, \beta_m, \beta_{m+1}, \dots, \beta_{m+k}\}\subset \Delta$ is called *fundamental* if it satisfies the following three conditions (see Definition 5.2):

- (1) $\{\beta_r\}_{r=1}^{m+k} \subset \mathfrak{h}^*$ is a linearly independent subset;
- (2) $\beta_s \beta_t \notin \Delta \cup \{0\} \ (1 \leq s \neq t \leq m+k);$
- (3) β_i is a real root $(1 \le i \le m)$ and β_j is a positive imaginary root $(m+1 \le j \le m+k)$.

Let $\tilde{\mathfrak{g}}$ be a subalgebra of $\mathfrak{g}(A)$ generated by root vectors attached to each root $\pm \beta_r$ $(1 \le r \le m+k)$ and a certain vector subspace \mathfrak{h}_0 of \mathfrak{h} . Then, $\tilde{\mathfrak{g}}$ is canonically isomorphic to a GKM algebra (see Theorem 5.1). We call this subalgebra $\tilde{\mathfrak{g}}$ a *regular subalgebra* of $\mathfrak{g}(A)$ after Dynkin.

The above definition of a fundamental subset and the construction of a subalgebra \tilde{g} are generalizations of those by Morita in [8]. There, he considered only the case all β_r are real roots (i.e., k=0 in the above notation) and constructed a subalgebra \hat{g} , which coincides with the derived algebra [\tilde{g} , \tilde{g}] of the above \tilde{g} , in order to introduce certain subsystems of the root system Δ of