The maximum Markovian self-adjoint extensions of generalized Schrödinger operators

By Masayoshi TAKEDA

(Received July 20, 1990) (Revised Dec. 28, 1990)

0. Introduction.

Let G be an open set in \mathbb{R}^{d} and let m be a Radon measure on G. Let S be a symmetric linear operator on $L^{2}(G, m)$ with the domain $\mathcal{D}[S]$ being dense in $L^{2}(G, m)$. Let us define a symmetric form by $\mathcal{E}_{(S)}(u, v)=(-Su, v)_{m}$, $u, v\in$ $\mathcal{D}[S]$ and assume that the symmetric form $\mathcal{E}_{(S)}$ is Markovian in the sense of [8]. Then, the Friedrichs extension of S, the self-adjoint operator associated with the smallest closed extension of $\mathcal{E}_{(S)}$, generates Markovian semigroup ([8; Theorem 2.11]). Let us denote by $\mathcal{A}_{\mathcal{M}}(S)$ the family of all self-adjoint extensions which generate Markovian semigroups, and let us call an element of $\mathcal{A}_{\mathcal{M}}(S)$ a *Markovian extension* of S. Recall that semi-order " \lt " on $\mathcal{A}_{\mathcal{M}}(S)$ is defined by

$$
A_1 < A_2 \quad \text{if } \mathcal{D}[A_1] \subset \mathcal{D}[A_2] \text{ and}
$$

$$
(\sqrt{-A_1}u, \sqrt{-A_1}u)_m \ge (\sqrt{-A_2}u, \sqrt{-A_2}u)_m \quad \text{for } u \in \mathcal{D}[\sqrt{-A_1}].
$$

Then, the Friedrichs extension of S is the minimum one of $\mathcal{A}_{\mathcal{M}}(S)$ with this semi-order. Now, it is natural to ask whether the maximum element of $\mathcal{A}_{\mathcal{A}}(S)$ exists and what is the maximum one if it exists.

In the case that m is the Lebesgue measure and S is the Laplacian Δ defined on $C_{0}^{\infty}(G)$ (in notation $\Delta\uparrow C_{0}^{\infty}(G)$), the maximum element of $\mathcal{A}_{\mathcal{A}}(\Delta)$ is the self-adjoint operator associated with the Sobolev space $W^{1,2}(G)$ ([8; Theorem 2.3.1]). Here $C_{0}^{\infty}(G)$ is the space of infinitely differentiable functions with compact support in G. In this paper, we shall extend this result to "generalized Schrödinger operators". More precisely, let ρ be a measurable function on G which is strictly positive almost everywhere and locally square integrable with respect to the Lebesgue measure λ^d . Let us assume that ρ is differentiable in the sense of the Schwartz distribution and its derivatives $\nabla_{i}\rho$ are also locally square integrable. Then, we define a generalized Schrödinger operator by

(0.1)
$$
L_{\rho}\varphi = \Delta\varphi + 2\sum_{i=1}^{d} \nabla_{i}\rho/\rho \cdot \nabla_{i}\varphi, \qquad \varphi \in C_{0}^{\infty}(G),
$$