The Gorensteinness of symbolic Rees algebras for space curves

By Shiro GOTO, Koji NISHIDA and Yasuhiro SHIMODA*

(Received July 17, 1990)

1. Introduction.

Let A be a regular local ring and \mathfrak{p} a prime ideal in A. We put $R_s(\mathfrak{p}) = \sum_{n \ge 0} \mathfrak{p}^{(n)} t_n$ (here t denotes an indeterminate over A) and call it the symbolic Rees algebra of \mathfrak{p} . Our purpose is to discuss when $R_s(\mathfrak{p})$ is a Gorenstein ring.

The problem when $R_s(\mathfrak{p})$ is Noetherian is, of course, more fundamental and has been studied by many authors from several points of view (cf. [3, 4, 5, 10, 11, 12, 13, 14, 16, 19, 20, 21 and 22]). The finite generation problem on the Aalgebra $R_s(\mathfrak{p})$ was raised by R. C. Cowsik [3], showing that \mathfrak{p} is a set-theoretic complete intersection in A if dim $A/\mathfrak{p}=1$ and if $R_s(\mathfrak{p})$ is a finitely generated Aalgebra. If A is not regular, there is no hope in general of $R_s(\mathfrak{p})$ being Noetherian (cf. e.g., [5, Sect. 5]), as was firstly noticed by D. Rees [19] in his construction of a counterexample to the Zariski problem. Nevertheless even though A is regular the rings $R_s(\mathfrak{p})$ are not necessarily Noetherian. P. Roberts [20] gave such examples, passing to Nagata's counterexamples [18] to the 14-th problem of Hilbert. And as far as we know, Cowsik's problem seems still open for general prime ideals $\mathfrak{p}=\mathfrak{p}(n_1, n_2, n_3)$ of A=k[[X, Y, Z]] (the formal power series ring over a field k) defining space monomial curves $X=t^{n_1}, Y=t^{n_2}$ and $Z=t^{n_3}$ with $GCD(n_1, n_2, n_3)=1$.

We look now at a prime ideal \mathfrak{p} of height 2 in a 3-dimensional regular local ring A with maximal ideal \mathfrak{m} . Then in his remarkable paper [12] C. Huneke gave the following criterion for $R_s(\mathfrak{p})$ to be a Noetherian ring:

(*) If there exist $f \in \mathfrak{p}^{(k)}$ and $g \in \mathfrak{p}^{(l)}$ with positive integers k, l such that $length_A(A/(f, g, x)A) = kl \cdot length_A(A/\mathfrak{p} + xA)$ for some $x \in \mathfrak{m} \setminus \mathfrak{p}$, then $R_s(\mathfrak{p})$ is Noetherian. When the field A/\mathfrak{m} is infinite, the converse is also true.

With this criterion Huneke explored prime ideals $\mathfrak{p}=\mathfrak{p}(n_1, n_2, n_3)$ and guaranteed that $R_s(\mathfrak{p})$ is Noetherian, if $\min(n_1, n_2, n_3)=4$.

In the present paper we would like to succeed Huneke's research, mainly asking for similar practical criteria as his for $R_s(\mathfrak{p})$ to be Gorenstein. It might

^{*} The authors are partially supported by Grant-in-Aid for Co-operative Research.