Global Sebastiani-Thom theorem for polynomial maps

By András NÉMETHI

(Received Sept. 25, 1989) (Revised April 5, 1990)

1. Introduction.

There are several methods for studying the topological type of affine hypersurfaces. Kouchnirenko and M. Oka have investigated in [Ko], [O2], [O3], [O4] the relation between Newton boundary and the topology of the generic fiber, Hà and Lê [H-L] determined the bifurcation set of polynomial maps with two variables using the Euler characteristic of the fibers. Another approach is due to Broughton [Br1], [Br2] who have introduced and studied the class of "tame" polynomials. His results have been extended by the author for the larger class of "quasitame" polynomials [Ne].

In this note we establish a Sebastiani-Thom type result. More precisely: Let $g: C^n \to C$ and $h: C^m \to C$ be polynomial maps with bifurcation sets Λ_g resp. Λ_h . We consider the sum-map $f: C^n \times C^m \to C$, f(x, y) = g(x) + h(y). We prove the following

THEOREM.

a) The bifurcation set of f is contained in $\Lambda_g + \Lambda_h$.

b) The generic fiber of f is homotopic equivalent with the join space of the generic fibers of the polynomial maps g and h.

c) The global algebraic monodromy of f (around all the bifurcation points) is induced by the join of the global geometric monodromies of g and h. (In particular it can be determined in terms of the global algebraic monodromies of g and h).

This result extends the results of Sebastiani-Thom [Se-T] and K. Sakamoto [Sa1], [Sa2] (in the local case) and M. Oka [O1] in the special case of weighted homogeneous polynomials. The proof is based on a new technique which applies to the general (global) case of the polynomials (without C^* -action).

We are indebted to the referee for suggesting us the proof of Theorem 3.2 which is more natural and simple than our original proof.