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1. Introduction.

Generalized functions and hyperfunctions have been introduced and studied
by many PeoPle using different approaches. In the work of K\"othe[11], [12],

Grothendieck [6], Gelfand and Silov [3], [4], Schwartz [19], Roumieu [15] and
Lions and Magenes [13], they were viewed as continuous linear functionals
acting on some test-function spaces which are usually the inductive limits of
sequences of normed spaces. However, in the work of Sato [17], hyperfunctions
were viewed more as algebraic objects pertaining to the boundary values of
holomorphic functions than as continuous linear functionals. In the case of the
real line $R$, the notion of a hyperfunction in Sato’s theory is very simple; a
hyperfunction on $R$ is defined by a holomorphic function on $C-R$ where $C$ is
the complex plane. And two such functions represent the same hyperfunction
if and only if their difference is holomorphic on $C$ , hence on $R$. More generally,
if $I$ is an open subset of $R$ and $V$ is an open subset of $C$ containing $I$ and in
which $I$ is relatively closed, then the module of hyperfunctions on $I$ is defined
as the quotient module $\mathcal{H}(V-I)/\mathcal{H}(V)$ where $\mathcal{H}(V-I)$ and $\mathcal{H}(V)$ are the com-
plex modules of locally holomorphic functions on $V-I$ and $V$ respectively.

Sato’s hyperfunctions have been defined on more general sets in the complex
plane such as curves and have also been generalized to higher dimensions using
sheaf theory.

On the unit circle $\partial D$ , hyperfunctions were first characterized by K\"othe [11],
[12] as continuous linear functionals acting on the linear space of holomorphic
complex-valued functions on $\partial D$ when provided with a certain locally convex
topology. Using different approaches, Sato [16] and Johnson [8] were able to
find a very interesting characterization of hyperfunctions on the unit circle in
terms of Fourier series. They showed that $f(e^{i\theta})$ is a hyperfunction on $\partial D$ if
and only if $f(e^{i\theta})= \sum_{n=-\infty}^{\infty}c_{n}e^{tn\theta}$ where $\lim\sup_{1n1arrow\infty}^{|n|}\sqrt{|c_{n}|}\leqq 1$ and the series
converges, of course, in the sense of hyperfunctions.

If one deforms the unit circle homotopically to a curve $\Gamma$ , both Sato’s and


