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Introduction.

This paper concerns the nonlinear parabolic equation in a real Hilbert space
$H$, which is of the form

(E) $\frac{d}{dt}u(t)+\partial\varphi(u(t))\ni f(t)$ ,

where $f\in L_{1oc}^{2}(R;H),$
$\varphi$ is a proper 1. $s.c$ . (lower semi-continuous) convex func-

tional on $H$ and $\partial\varphi$ is the subdifferential of $\varphi$ .
The existence of periodic solutions to (E) has been studied by many authors

under some assumptions on $\partial\varphi$ and $f$ (see [4], [7], [8], [12]).

The purpose of this paper is to show the existence of anti-periodic solutions
to (E) under some condition different from coerciveness. This is motivated by
the fact that generally elliptic operators defined on unbounded domains of $R^{n}$

are not coercive. We show the existence of anti-periodic solutions in case $\partial\varphi$ is
odd (Theorem 1.1). Next we apply this result to a nonlinear heat equation
defined on an exterior domain of $R^{n}$ (Section 3). Finally we give examples to
see that the conditions assumed in Theorem 1.1 are essential for the existence
of a periodic solution to (E) (see Propositions 1.1 and 1.2).

1. Results.

Let $H$ be a real Hilbert space with inner product $(\cdot, )$ and norm $\Vert\Vert$ . We
consider the existence of periodic solutions to the equation;

$(E;\varphi, f)$ $\frac{d}{dt}u(t)+\partial\varphi(u(t))\ni f(t)$ .

Here $\varphi$ is a proper 1. $s.c$ . convex functional on $H$ and $\partial\varphi$ is the subdifferential
of $\varphi$ and $f\in L_{1oc}^{2}(R;H)$ .

Let $g$ be a locally square-integrable function on $R$ with values in $H$. Then


