J. Math. Soc. Japan Vol. 40, No. 2, 1988

An asymptotic estimation of dimension of harmonic spinors

By Ken-ichi SUGIYAMA

(Received Nov. 25, 1986)

§1. Introduction.

The purpose of the present paper is to give an asymptotic bounds of the dimension of twisted harmonic spinors.

Let (X, g) be an oriented 2*n*-dimensional compact spinnable Riemannian manifold, and $\{L, h\}$ a C^{∞} complex line bundle over X with a Hermitian fibre metric h. We consider the twisted Dirac's operator $D_k: \Gamma(S \otimes L^k) \rightarrow \Gamma(S \otimes L^k)$ which is naturally induced from the Levi-Civita connection of (X, g) and the Hermitian connection of $\{L, h\}$. Here S denotes the spinor bundle of X. Let Δ_k be the Laplace-Beltrami operator of D_k . Then, by Bochner-Weizenböck formula, we obtain that, for $u \in \Gamma(S \otimes L^k)$,

$$\int_{\mathcal{X}} \langle u, \mathcal{A}_{k}u \rangle dV_{g} = \int_{\mathcal{X}} \Big\{ |\nabla_{k}u|^{2} + \frac{\kappa}{4} |u|^{2} + k \langle \hat{\Theta}_{h}u, u \rangle \Big\} dV_{g},$$

where \langle , \rangle represents the inner product on $S \otimes L^k$ with respect to the metric g and h, κ is the scalar curvature of (X, g), and $\hat{\Theta}_h$ is an element of $\operatorname{End}_c(S \otimes L^k)$ which is defined as

$$\hat{\Theta}_h := \frac{1}{2} \sum_{i,j} (e_i e_j \otimes \Theta_h(e_i, e_j)).$$

Here $\{e_1, \dots, e_{2n}\}$ is an oriented orthonormal base of T_xX , and Θ_h is the curvature form of $\{L, h\}$. Now, following Demailly's observation ([3]), we consider the operator $\kappa/4 + k\hat{\Theta}_h$ as a potential of the Dirac's operator D_k , and we shall show that the dimension of harmonic spinors of D_k can be asymptotically estimated in terms of the operator $\hat{\Theta}_h$ as k goes to infinity. In fact, using Theorem 2.3 of [3], we shall show the following asymptotic estimation which is a Dirac's operator-version of Demailly's result on $\bar{\partial}$ -operator.

THEOREM. For the curvature form Θ_h of $\{L, h\}$, we define a subset X_+ (resp. X_-) of X as

$$X_+$$
 (resp. X_-) := { $x \in X$ | $((i\Theta_h)^n/dV_g)(x) > 0$ (resp. <0)},

where dV_g is the volume form of (X, g), and we define $H_k^+(0)$ (resp. $H_k^-(0)$) as