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\S 1. Introduction.

The purpose of the present paper is to give an asymptotic bounds of the
dimension of twisted harmonic spinors.

Let (X, g) be an oriented $2n$ -dimensional compact spinnable Riemannian
manifold, and $\{L, h\}$ a $C^{\infty}$ complex line bundle over $X$ with a Hermitian fibre
metric $h$ . We consider the twisted Dirac’s operator $D_{k}$ : $\Gamma(S\otimes L^{k})arrow\Gamma(S\otimes L^{k})$

which is naturally induced from the Levi-Civita connection of (X, g) and the
Hermitian connection of $\{L, h\}$ . Here $S$ denotes the spinor bundle of $X$. Let
$\Delta_{k}$ be the Laplace-Beltrami operator of $D_{k}$ . Then, by Bochner-Weizenb\"ock
formula, we obtain that, for $u\in\Gamma(S\otimes L^{k})$ ,

$\int_{X}\langle u, \Delta_{k}u\rangle dV_{g}=\int_{X}\{|\nabla_{k}u|^{2}+\frac{\kappa}{4}|u|^{2}+k\langle\hat{\Theta}_{h}u, u\rangle\}dV_{g}$ ,

where $\langle, \rangle$ represents the inner product on $S\otimes L^{k}$ with respect to the metric $g$

and $h,$ $\kappa$ is the scalar curvature of (X, $g$), and $\hat{\Theta}_{h}$ is an element of $End_{C}(S\otimes L^{k})$

which is defined as
$\hat{\Theta}_{h}$

$:= \frac{1}{2}\sum_{i,j}(e_{i}e_{j}\otimes\Theta_{h}(e_{i}, e_{j}))$ .

Here $\{e_{1}, \cdots , e_{2n}\}$ is an oriented orthonormal base of $T_{x}X$, and $\Theta_{h}$ is the cur-
vature form of $\{L, h\}$ . Now, following Demailly’s observation ([3]), we con-
sider the operator $\kappa/4+k\hat{\Theta}_{h}$ as a potential of the Dirac’s operator $D_{k}$ , and we
shall show that the dimension of harmonic spinors of $D_{k}$ can be asymptotically
estimated in terms of the operator $\hat{\Theta}_{h}$ as $k$ goes to infinity. In fact, using
Theorem 2.3 of [3], we shall show the following asymptotic estimation which
is a Dirac’s operator-version of Demailly’s result on $\partial$-operator.

THEOREM. For the curvature form $\Theta_{h}$ of $\{L, h\}$ , we define a subset $X_{+}$

(resp. $X_{-}$ ) of $X$ as

$X_{+}$ (resP. X.-): $=$ { $x\in X|((i\Theta_{h})^{n}/dV_{g})(x)>0$ (resp. $<0)$ } ,

where $dV_{g}$ is the volume form of (X, $g$), and we define $H_{k}^{+}(0)$ (resp. $H_{k}^{-}(0)$) as


