Singularities of the scattering kernel for two balls

By Shin-ichi NAKAMURA and Hideo SOGA

(Received Oct. 6, 1986)

§1. Introduction.

Let \mathcal{O} be a compact obstacle in \mathbb{R}^n $(n \ge 2)$ with a C^{∞} boundary $\partial \Omega$, and assume that $\Omega = \mathbb{R}^n - \mathcal{O}$ is connected. Let us consider the scattering by \mathcal{O} expressed by the equation

(1.1)
$$\begin{cases} \Box u(t, x) = 0 & \text{in } \mathbb{R}^{1} \times \mathcal{Q} \quad (\Box = \partial_{t}^{2} - \Delta_{x}), \\ u(t, x') = 0 & \text{in } \mathbb{R}^{1} \times \partial \mathcal{Q}, \\ u(0, x) = f_{1}(x) & \text{on } \mathcal{Q}, \\ \partial_{t} u(0, x) = f_{2}(x) & \text{on } \mathcal{Q}. \end{cases}$$

We denote by $k_{-}(s, \omega)$ $(k_{+}(s, \omega)) \in L^{2}(\mathbb{R}^{1} \times S^{n-1})$ the incoming (outgoing) translation representation of the initial data $f=(f_{1}, f_{2})$. The scattering operator $S: k_{-} \rightarrow k_{+}$ becomes a unitary operator from $L^{2}(\mathbb{R}^{1} \times S^{n-1})$ to $L^{2}(\mathbb{R}^{1} \times S^{n-1})$ (cf. Lax and Phillips [5], [6]), and is represented with a distribution kernel $S(s, \theta, \omega)$:

$$(Sk_{-})(s, \boldsymbol{\omega}) = \iint S(s-t, \boldsymbol{\theta}, \boldsymbol{\omega})k_{-}(t, \boldsymbol{\omega})dtd\boldsymbol{\omega}.$$

 $S(s, \theta, \omega)$ is called the scattering kernel. Lax and Phillips in [5] showed that the scattering operator S determined the obstacle \mathcal{O} uniquely (cf. Theorem 5.6 of Ch. V in [5]). But, it was not made clear how the analytical properties of S were connected with the geometrical properties of \mathcal{O} .

Recently some authors have examined the relation between O and $S(s, \theta, \omega)$. Majda in [7] has obtained the following results in the case of n=3:

(1.2)
$$\operatorname{supp} S(\cdot, -\omega, \omega) \subset (-\infty, -2r(\omega)],$$

(1.3)
$$-2r(\boldsymbol{\omega}) \in \operatorname{sing\,supp} S(\cdot, -\boldsymbol{\omega}, \boldsymbol{\omega}),$$

where $r(\omega) = \min_{x \in \mathcal{O}} x \cdot \omega$. The above results are proved also in the case of $n \ge 2$ by Soga [12]. Soga [11] and Yamamoto [14] have characterized the convexity of \mathcal{O} with the singularities of $S(s, -\omega, \omega)$: