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\S 1. Introduction.

Let $x=(x_{1}, \cdots , x_{d})\in R^{d}$ be the variable in $R^{d}$ and let us put $\partial=(\partial_{1}, \cdots , \partial_{d})$

where $\partial_{j}=\partial/\partial x_{j}$, $j=1,$ $\cdots$ , $d$ . For a multi-index $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{d})\in N^{d}$ , $N=$

$\{0,1, 2, \}$ we set $(x\cdot\partial)^{\alpha}=(x_{1}\partial_{1})^{a_{1}}\cdots(x_{d}\partial_{d})^{\alpha_{d}}$ . Let $\lambda\in C^{d}$ be given and fixed.
Then we shall study the characterization of divergent formal solutions $u(x)$ of
the form $u(x)=x^{\lambda}\Sigma_{\eta\in N}av_{\eta}x^{\eta}/\eta!$ of the equation

(1.1) $P(x ; x \cdot\partial)u\equiv(\sum_{|\alpha|=m}a_{\alpha}(x\cdot\partial)^{\alpha}+\sum_{|\beta|\leqq m-\sigma}b_{\beta}(x)(x\cdot\partial)^{\beta})u(x)=f(x)x^{\lambda}$

where $\sigma\geqq 1$ is an integer, $m\in N$ and $a_{\alpha}’ s$ are complex constants. We assume
that the function $b_{\beta}(x)$ is analytic at the origin and that $f(x)$ is a given
analytic function.

For ordinary differential equations of Fuchs type ( $i$ . $e$ . $d=1$ in (1.1)) we
know that all formal solutions of Equation (1.1) converge. Nevertheless, in
the case $d\geqq 2$ we often get divergent formal solutions of Equation (1.1) if the
coefficients satisfy certain conditions (cf. [3], [9]). In fact there exist equations
with infinite-dimensional kernel and those with small denominators. Typical
examples are the equations $(x_{1}\partial_{1}-\tau x_{2}\partial_{2})u=f(x)$ where $\tau$ is a positive rational
and irrational number respectively. By using elementary facts of diophantine
analysis we can show that there exists an irrational $\tau>0$ and an entire function
$f(x)$ such that the equation for this $\tau$ and $f(x)$ has a formal solution
$u(x)= \sum u_{\eta}x^{\eta}$ with the estimate $|\eta|!^{s}/|u_{\eta}|arrow 0$ as $|\eta|arrow\infty$ for $s=1,2,$ $\cdots$ In
this case the formal solution has bad behavior. Even for these simple examples
the criterion which distinguishes such bad equations from good ones can only
be expressed by the number-theoretical properties of $\tau$, and is not simple. Hence
if we are to study formal solutions of more general equations in the analytic
category we need very delicate and complicated arguments (cf. [8], [9]). It is
an interesting problem to give a meaning to such divergent solutions and to
study whether this phenomenon is peculiar to analytic solutions or also occurs
for $C^{\infty}$-solutions.


