Divergent formal solutions to Fuchsian partial differential equations

By Masafumi YOSHINO

(Received Feb. 13, 1986) (Revised Sept. 19, 1986)

§1. Introduction.

Let $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ be the variable in \mathbb{R}^d and let us put $\partial = (\partial_1, \dots, \partial_d)$ where $\partial_j = \partial/\partial x_j$, $j=1, \dots, d$. For a multi-index $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, $\mathbb{N} = \{0, 1, 2, \dots\}$ we set $(x \cdot \partial)^{\alpha} = (x_1 \partial_1)^{\alpha_1} \cdots (x_d \partial_d)^{\alpha_d}$. Let $\lambda \in \mathbb{C}^d$ be given and fixed. Then we shall study the characterization of divergent formal solutions u(x) of the form $u(x) = x^{\lambda} \sum_{\eta \in \mathbb{N}^d} v_{\eta} x^{\eta} / \eta!$ of the equation

(1.1)
$$P(x; x \cdot \partial)u \equiv \left(\sum_{|\alpha|=m} a_{\alpha}(x \cdot \partial)^{\alpha} + \sum_{|\beta|\leq m-\sigma} b_{\beta}(x)(x \cdot \partial)^{\beta}\right)u(x) = f(x)x^{\lambda}$$

where $\sigma \ge 1$ is an integer, $m \in N$ and a_{α} 's are complex constants. We assume that the function $b_{\beta}(x)$ is analytic at the origin and that f(x) is a given analytic function.

For ordinary differential equations of Fuchs type (i.e. d=1 in (1.1)) we know that all formal solutions of Equation (1.1) converge. Nevertheless, in the case $d \ge 2$ we often get divergent formal solutions of Equation (1.1) if the coefficients satisfy certain conditions (cf. [3], [9]). In fact there exist equations with infinite-dimensional kernel and those with small denominators. Typical examples are the equations $(x_1\partial_1 - \tau x_2\partial_2)u = f(x)$ where τ is a positive rational and irrational number respectively. By using elementary facts of diophantine analysis we can show that there exists an irrational $\tau > 0$ and an entire function f(x) such that the equation for this τ and f(x) has a formal solution $u(x) = \sum u_{\eta} x^{\eta}$ with the estimate $|\eta|!^{s}/|u_{\eta}| \rightarrow 0$ as $|\eta| \rightarrow \infty$ for $s=1, 2, \cdots$. In this case the formal solution has bad behavior. Even for these simple examples the criterion which distinguishes such bad equations from good ones can only be expressed by the number-theoretical properties of τ , and is not simple. Hence if we are to study formal solutions of more general equations in the analytic category we need very delicate and complicated arguments (cf. [8], [9]). It is an interesting problem to give a meaning to such divergent solutions and to study whether this phenomenon is peculiar to analytic solutions or also occurs for C^{∞} -solutions.