Characterizations of the $\overline{\partial}$ -cohomology groups for a family of weakly pseudoconvex manifolds

By Hideaki KAZAMA* and Kwang Ho SHON

(Received May 24, 1986)

Introduction.

On strongly pseudoconvex manifolds one can know the finiteness or the vanishing of the $\bar{\partial}$ -cohomology groups by the method of a priori estimate ([1, 5, 9]).

In the case of the $\bar{\partial}$ -problem on weakly pseudoconvex manifolds, the method of a priori estimate seems to be less powerful (for instance, see [6, 7, 10, 13, 14]).

Let T^n be a complex *n*-dimensional torus and $\operatorname{Pic}^0(T^n)$ the Picard group, that is, the group of holomorphic line bundles on T^n with Chern class zero. Let $E \in \operatorname{Pic}^0(T^n)$. In [4] Grauert showed that there exists a C^{∞} weakly plurisubharmonic exhaustion function on E. So we can regard $\operatorname{Pic}^0(T^n)$ as a family of weakly pseudoconvex manifolds.

In this paper we obtain a criterion for the $\bar{\partial}$ -cohomology in this family $\operatorname{Pic}^{0}(T^{n})$, using the theory of Diophantine approximation.

It was known that $\operatorname{Pic}^{0}(T^{n})$ is again a complex *n*-dimensional torus. Concretely we give an isomorphism $i: \mathbb{C}^{n}/\Lambda \cong \operatorname{Pic}^{0}(T^{n})$ in Lemma 1, where Λ is a discrete lattice of rank 2n in \mathbb{C}^{n} . We define on $\operatorname{Pic}^{0}(T^{n})$ the invariant distance

$$d(E, F) := \min\{ \|a - b + c\|; i(a + \Lambda) = E, i(b + \Lambda) = F, c \in \Lambda \},\$$

where $||(z_1, \dots, z_n)|| := \max |z_i|$. The unit element of the group $\text{Pic}^{0}(T^n)$ is denoted by 1. We put

 $Q := \{E \in \operatorname{Pic}^{0}(T^{n}); E^{l} = 1 \text{ for some } l \ge 1\}.$

Using Diophantine approximation on $\{d(\mathbf{1}, E^l); l \ge 1\}$, we define the following subsets of $\operatorname{Pic}^{0}(T^n)$.

$$\begin{split} \mathcal{P} &:= \{ E \in \operatorname{Pic}^{0}(T^{n}); \inf_{l>1} \exp(al)d(\mathbf{1}, E^{l}) > 0 \text{ for any } a > 0 \} \,. \\ \mathcal{R} &:= \{ E \in \operatorname{Pic}^{0}(T^{n}) \setminus \mathcal{Q}; \inf_{l>1} \exp(al)d(\mathbf{1}, E^{l}) = 0 \text{ for some } a > 0 \} \,. \\ \mathcal{P}^{*} &:= \{ E \in \operatorname{Pic}^{0}(T^{n}); \inf_{l>1} \exp(al)d(\mathbf{1}, E^{l}) > 0 \text{ for some } a > 0 \} \,. \\ \mathcal{R}^{*} &:= \{ E \in \operatorname{Pic}^{0}(T^{n}) \setminus \mathcal{Q}; \inf_{l>1} \exp(al)d(\mathbf{1}, E^{l}) = 0 \text{ for any } a > 0 \} \,. \end{split}$$

* This author was partially supported by Grant-in-Aid for Scientific Research (No 62302003), Ministry of Education, Science and Culture.