Extensions of nonlinear completely positive maps

By Fumio HIAI and Yoshihiro NAKAMURA

(Received Oct. 21, 1985)

Introduction.

It has been well recognized that the most appropriate notion of positivity for linear maps between C^* -algebras is the complete positivity. Although there were classical works [8, 11, 12] on numerical completely positive functions, it was not until the recent papers of Ando and Choi [1] and Arveson [3] that the nonlinear complete positivity was investigated in the C^* -algebraic framework. According to [1], in spite of the extent of nonlinearity, any completely positive map between arbitrary C^* -algebras admits a nice representation as a doubly infinite sum of compressions of completely positive linear maps on certain C^* -tensor products. On the other hand, the essentially similar representation was obtained in [3] for bounded completely positive complex-valued functions on the open unit ball of a unital C^* -algebra.

Since Arveson's Hahn-Banach type extension theorem [2] for completely positive linear maps, the linear completely positive extension has been discussed especially in connection with injectivity and nuclearity of C^* -algebras (see e.g. [5, 7]). It seems natural to consider the nonlinear counterpart of complete positive extension. The purpose of this paper is to investigate the problem when completely positive maps defined on \mathcal{A} (resp. ball \mathcal{A} , the open unit ball of \mathcal{A}) can be extended on \mathcal{B} (resp. ball \mathcal{B}) given a C^* -subalgebra \mathcal{A} of a C^* -algebra \mathcal{B} .

In Section 1 of this paper, on the lines of [1] we generalize the representation theorem in [3] to bounded completely positive maps on ball $\mathcal A$ with values in a von Neumann algebra. In Section 2, we show the local uniform continuity of completely positive maps. In Section 3, we give some completely positive extension theorems in special cases when $\mathcal B=\mathcal A_{\mathrm I}$ or $\mathcal A$ is seminuclear. We further characterize pairs $\mathcal A \subset \mathcal B$ of C^* -algebras having the completely positive extension property. It is proved above all that every completely positive map from $\mathcal A$ to $\mathcal B(\mathcal H)$ is extended on $\mathcal B$ if and only if $\mathcal A^{\otimes m} \otimes \bar{\mathcal A}^{\otimes n} \subset \mathcal B^{\otimes m} \otimes \bar{\mathcal B}^{\otimes n}$ for all $m, n \geq 0$, where $\bar{\mathcal A}$ is the C^* -algebra conjugate to $\mathcal A$ and $\mathcal A^{\otimes m} \otimes \bar{\mathcal A}^{\otimes n}$ is the projective C^* -tensor product of m copies of $\bar{\mathcal A}$ and n copies of $\bar{\mathcal A}$. Finally in Section 4, we show that any completely positive map from $\mathcal A$ to a von Neumann