Smooth perturbations in ordered Banach spaces and similarity for the linear transport operators

By Tomio UMEDA

(Received March 20, 1985)

1. Introduction.

The aim of this paper is to develop a new method for establishing the similarity for a pair of linear operators in an ordered Banach space X over C. Consider a pair of (in general unbounded) linear operators B_1 and $B_2=B_1+A$ with A a bounded operator, and assume that both $-B_1$ and $-B_2$ generate the bounded C_0 -groups on X. Assume, in addition, that e^{-tB_1} and -A are positivity preserving, and that A is $(-iB_1, 1)$ -smooth. Then we show that B_2 is similar to B_1 (see Theorem 1 in section 2). The similarity of B_2 to B_1 is established by constructing both the wave operator $W_+(B_2, B_1) = \text{s-lim}_{t\to+\infty} e^{tB_2} e^{-tB_1}$ and the inverse wave operator $W_+(B_1, B_2) = \text{s-lim}_{t\to+\infty} e^{tB_1} e^{-tB_2}$. To do this, we simply use Cook's method. Our technique depends heavily upon both e^{-tB_1} and -A being positivity preserving.

There is some literature on the theory of smooth perturbations. Kato [7] dealt with a perturbed operator of the form $T(\kappa)=T+\kappa V$ (κ being a small complex-parameter) in a Hilbert space and established the similarity of $T(\kappa)$ to T. Kato's result has been extended to a reflexive Banach space setting by Lin [9, 10], and to a not necessarily reflexive Banach space setting by Evans [3]. These authors need to factorize the perturbation V into the form D^*C , where C is T-smooth and D is T^* -smooth. We do not use such factorization, however.

Our theory of smooth perturbations is applicable to the linear transport operator (Boltzmann operator) in multiple scattering problem. We consider the linear transport operator

$$\begin{split} (-Bu)(x,\,\xi) &= -\xi\cdot\nabla_x u(x,\,\xi) - \sigma(x,\,\xi)u(x,\,\xi) \\ &+ \int_{\mathbf{R}^d} k(x,\,\xi',\,\xi)u(x,\,\xi')d\xi' \qquad (x \in \mathbf{R}^d,\,\xi \in \mathbf{R}^d) \end{split}$$

as a perturbation of the collisionless transport operator $-B_0 = -\xi \cdot \nabla_x$. Here σ

This research was supported by Grant-in-Aid for Encouragement of Young Scientist (No. 59740070) of Ministry of Education, and by Yukawa Foundation.