J. Math. Soc. Japan Vol. 38, No. 1, 1986

On Z_p -extensions of real quadratic fields

By Takashi FUKUDA and Keiichi KOMATSU

(Received Sept. 18, 1984)

§0. Introduction.

Let k be a finite totally real extension of Q, and p an odd prime number. Concerning the Greenberg's conjecture (cf. [2]) which states that Iwasawa invariants $\mu_p(k)$ and $\lambda_p(k)$ both vanish, we have obtained some results in the previous paper [1]. The purpose of this paper is to extend the results in our previous work.

For a finite algebraic number field K, we denote by h_K , C_K , and E_K the class number of K, the ideal class group of K, and the unit group of K, respectively. We denote also by |X| the cardinality of a finite set X.

In the following, we assume that k is a real quadratic field and ε denotes the fundamental unit of k. Let p be an odd prime number which splits in k/Q, and \mathfrak{P} a prime of k lying above p. Take $\alpha \in k$ such that $\mathfrak{P}^{n_k} = (\alpha)$. We define n_1 (resp. n_2) to be the maximal integer such that $\alpha^{p-1} \equiv 1 \pmod{p^{n_1} \mathbb{Z}_p}$ (resp. $\varepsilon^{p-1} \equiv 1 \pmod{p^{n_2} \mathbb{Z}_p}$). Note that n_1 is uniquely determined under the condition $n_1 \leq n_2$. For the cyclotomic \mathbb{Z}_p -extension

 $k = k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset k_{\infty},$

let A_n be the *p*-primary part of the ideal class group of k_n , B_n the subgroup of A_n consisting of ideal classes which are invariant under the action of $\operatorname{Gal}(k_n/k)$, and D_n the subgroup of A_n consisting of ideal classes which contain a product of ideals lying over *p*. Let E_n be the unit group of k_n . For $m \ge n \ge 0$, $N_{m,n}$ denote the norm maps. We fix a topological generator σ of $G(k_{\infty}/k)$. Let ζ_p be a primitive *p*-th root of unity, and A_0^* the *p*-primary part of the ideal class group of $k(\zeta_p)$. Our main theorems are

THEOREM 1. Let k be a real quadratic field and p an odd prime number which splits in k/Q. Assume that

(1) $n_1=1$, and

(2) $A_0 = D_0$.

Then, for $n \ge n_2 - 1$, we have $|A_n| = |D_n| = |D_0| \cdot p^{n_2 - 1}$.

Concerning the Iwasawa invariants $\mu_p(k)$, $\lambda_p(k)$ and $\nu_p(k)$, we obtain the next corollary.