Virtual character modules of semisimple Lie groups and representations of Weyl groups

By Kyo NISHIYAMA

(Received July 27, 1984)

Introduction.

Let G be a connected semisimple Lie group with finite centre and g its Lie algebra. We call G acceptable if there exists a connected complex Lie group G_c with Lie algebra $\mathfrak{g}_c = \mathfrak{g} \bigotimes_{\mathbf{R}} \mathbf{C}$ which has the following two properties. (1) The canonical injection from g into \mathfrak{g}_c can be lifted up to a homomorphism of G into G_c . (2) For a Cartan subalgebra \mathfrak{h}_c of \mathfrak{g}_c , let ρ be half the sum of positive roots of $(\mathfrak{g}_c, \mathfrak{h}_c)$. Then $\xi_{\rho}(\exp X) = \exp(\rho(X))$ $(X \in \mathfrak{h}_c)$ defines a character of H_c into C^* .

We assume that G is acceptable throughout this paper.

For an irreducible quasi-simple representation π of G, we can associate π with an infinitesimal character $\lambda \in \mathfrak{h}_{c}^{*}$, where \mathfrak{h}_{c}^{*} is the complex dual of a Cartan subalgebra \mathfrak{h} of g. Also a distribution character $\Theta(\pi)$ of an irreducible quasi-simple representation π can be defined. We call $\Theta(\pi)$ an irreducible character of π which has an infinitesimal character λ . Let $V(\lambda)$ be the virtual character module of G whose element has an infinitesimal character λ .

In many papers, representations of the Weyl group $W=W(\mathfrak{h}_c)$ on the space $V(\lambda)$ are considered under the assumption that λ is regular and integral for G_c , i.e., λ is regular and is a differential of a character of H_c . G. Lustig and D. Vogan [15] considered W-module structure of $V(\lambda)$, using so-called "Springer representations". G. Zuckerman [12] also defined a representation of W on $V(\lambda)$, taking advantage of tensor products with finite dimensional representations of G. After his work, D. Barbasch and D. Vogan [1] restated his definition of the representation of W by means of "coherent continuation" and determined the W-module structure in the case that G is a connected reductive group with all the Cartan subgroups connected and that G has a compact Cartan subgroup. On the other hand, representations of the Weyl group W on the space of so-called Goldie rank polynomials are considered by A. Joseph [10], D. R. King [11] and others. It seems that these representations on the space of Goldie rank polynomials or the character polynomials can be realized as subrepresentations of the representation on a virtual character module $V(\lambda)$.