Automorphism groups of multilinear mappings

By Yoshimi EGAWA and Hiroshi SUZUKI

(Received Feb. 14, 1984)

1. Introduction.

The relation between the nonsingularity of a multilinear mapping and the finiteness of its automorphism group was recently studied by the second author [2]. In particular, it was shown ([2, Theorem A]) that the nonsingularity implies the finiteness under some restriction on the characteristic of the underlying field. In this paper we shall prove the same result without this restriction.

If V is a vector space over a field, a multilinear mapping

$$\theta: V \times \stackrel{r}{\cdots} \times V \longrightarrow V$$

from the direct product of r copies of V into V itself is called simply a multilinear mapping of degree r on V. The subgroup $\operatorname{Aut}(\theta)$ of the general linear group $\operatorname{GL}(V)$ is defined by

$$\operatorname{Aut}(\theta) = \{ \varphi \in \operatorname{GL}(V) \mid \theta(x_1, x_2, x_3, \dots, x_r)^{\varphi} = \theta(x_1^{\varphi}, x_2^{\varphi}, x_3^{\varphi}, \dots, x_r^{\varphi})$$
 for all $x_1, x_2, x_3, \dots, x_r \in V \}$.

We say that θ is nonsingular, if $\theta(x, x, x, \dots, x) \neq 0$ for all $0 \neq x \in V$. Our main result is:

Theorem A. Let θ be a nonsingular multilinear mapping of degree $r \ge 2$ on a vector space V of dimension n over an algebraically closed field F of characteristic p > 0. Then $Aut(\theta)$ is a finite group.

Theorem A can be derived from the following Theorem B.

THEOREM B. Let F, p, V, n, θ , r be as in Theorem A. Then for every unipotent subgroup Q of $Aut(\theta)$,

$$|Q| \leq p^{i \geq 1} [n/p^i],$$

where [] denotes the greatest integer not exceeding the number inside.

That Theorem B implies Theorem A follows from the following two propositions which appear as Propositions 1 and 6 in [2]. (In these two propositions, the characteristic is arbitrary. In Proposition D, the field need not be algebraically closed.)