Singular hyperbolic systems, V. Asymptotic expansions for Fuchsian hyperbolic partial differential equations

By Hidetoshi TAHARA

(Received July 28, 1983)

In this paper, we study the asymptotic behavior of solutions of Fuchsian hyperbolic partial differential equations (in Tahara [9-III]), and determine complete asymptotic expansions of solutions in $C^{\infty}((0, T) \times \mathbb{R}^n)$ as $t \to +0$. Our result corresponds to the well-known result in the theory of ordinary differential equations with regular singularities.

Let $(t, x) \in [0, T) \times \mathbb{R}^n$ (T > 0) and let

$$P(t, x, \partial_t, \partial_x) = t^m \partial_t^m + P_1(t, x, \partial_x) t^{m-1} \partial_t^{m-1} + \cdots + P_m(t, x, \partial_x)$$

be a linear partial differential operator of order $m (\geq 1)$ with C^{∞} coefficients on $[0, T) \times \mathbb{R}^n$. Assume that P satisfies the following conditions:

- (i) order $P_i(t, x, \partial_x) \leq j$ $(1 \leq j \leq m)$,
- (ii) order $P_i(0, x, \partial_x) \leq 0$ $(1 \leq j \leq m)$.

Then, P is said to be a Fuchsian type operator with respect to t. Further, if P satisfies some hyperbolicity conditions, P is said to be a Fuchsian hyperbolic operator with respect to t. By (ii), $P_j(0, x, \partial_x)$ $(1 \le j \le m)$ are functions in x. We set $P_j(0, x, \partial_x) = a_j(x)$ $(1 \le j \le m)$. Then, the indicial polynomial $C(\lambda, x)$ associated with P is defined by

$$\mathcal{C}(\lambda, x) = \lambda(\lambda - 1) \cdots (\lambda - m + 1) + a_1(x)\lambda(\lambda - 1) \cdots (\lambda - m + 2) + \cdots + a_m(x)$$

and the characteristic exponents $\rho_1(x)$, \cdots , $\rho_m(x)$ of P are defined by the roots of the indicial equation $C(\lambda, x)=0$ in λ .

In [9-III], we have solved the Cauchy problem in $C^{\infty}([0, T] \times \mathbb{R}^n)$ for Fuchsian hyperbolic operators P under various assumptions of hyperbolicity. But, here, we want to consider the equation

(S)
$$P(t, x, \partial_t, \partial_x)u(t, x)=0$$

in $C^{\infty}((0, T) \times \mathbb{R}^n)$ (not in $C^{\infty}([0, T) \times \mathbb{R}^n)$) under the same assumptions as in

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57740102), Ministry of Education.