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Singular hyperbolic systems, V.

Asymptotic expansions for Fuchsian hyperbolic
partial differential equations
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(Received July 28, 1983)

In this paper, we study the asymptotic behavior of solutions of Fuchsian
hyperbolic partial differential equations (in Tahara [9-III]), and determine complete
asymptotic expansions of solutions in $C^{\infty}((O, T)\cross R^{n})$ as $tarrow+O$ . Our result
corresponds to the well-known result in the theory of ordinary differential
equations with regular singularities.

Let $(t, x)\in[0, T)\cross R^{n}(T>0)$ and let

$P(t, x, \partial_{t}, \partial_{x})=t^{m}\partial_{t}^{m}+P_{1}(t, x, \partial_{x})t^{m-1}\partial_{t}^{m}"+\cdots+P_{m}(t, x, \partial_{x})$

be a linear partial differential operator of order $m(\geqq 1)$ with $C^{\infty}$ coefficients on
$[0, T)\cross R^{n}$ . Assume that $P$ satisfies the following conditions:

(i) order $P_{j}(t, x, \partial_{x})\leqq j$ $(1\leqq j\leqq m)$ ,
(ii) order $P_{j}(0, x, \partial_{x})\leqq 0$ $(1\leqq j\leqq m)$ .

Then, $P$ is said to be a Fuchsian type operator with respect to $t$ . Further, if $P$

satisfies some hyperbolicity conditions, $P$ is said to be a Fuchsian hyperbolic
operator with respect to $i$ . By (ii), $P_{j}(0, x, \partial_{x})(1\leqq j\leqq m)$ are functions in $x$ . We
set $P_{j}(0, x, \partial_{x})=a_{j}(x)(1\leqq]\leqq m)$ . Then, the indicial polynomial $C(\lambda, x)$ associated
with $P$ is defined by

$C(\lambda, x)=\lambda(\lambda-1)\cdots(\lambda-m+1)+a_{1}(x)\lambda(\lambda-1)\cdots(\lambda-m+2)+\cdots+a_{m}(x)$

and the characteristic exponents $\rho_{1}(x),$ $\cdots$ , $\rho_{m}(x)$ of $P$ are defined by the roots
of the indicial equation $C(\lambda, x)=0$ in $\lambda$ .

In [9-III], we have solved the Cauchy problem in $C^{\infty}([0, T)\cross R^{n})$ for Fuchsian
hyperbolic operators $P$ under various assumptions of hyperbolicity. But, here, we
want to consider the equation

(S) $P(t, x, \partial_{t}, \partial_{x})u(t, x)=0$

in $C^{\infty}((O, T)\cross R^{n})$ (not in $C^{\infty}([0,$ $T)\cross R^{n}$ )) under the same assumptions as in
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