The OE-property of group automorphisms

By Nobuo AOKI and Masahito DATEYAMA

(Received Feb. 16, 1982) (Revised Jan. 28, 1983)

§ 1. Introduction.

We shall discuss A. Morimoto's problem ([10]) concerned with the tolerance stability conjecture of E. C. Zeeman mentioned in F. Takens ([15]).

Let φ be a (self-) homeomorphism of a compact metric space X with a metric d. A sequence of points $\{x_i\}_{i\in \mathbb{Z}}$ is called a δ -pseudo-orbit of φ if $d(\varphi(x_i), x_{i+1}) < \delta$ for $i \in \mathbb{Z}$. A sequence $\{x_i\}_{i\in \mathbb{Z}}$ is called to be ε -traced by $x \in X$ if $d(\varphi^i(x), x_i) < \varepsilon$ holds for $i \in \mathbb{Z}$. We say that (X, φ) has the pseudo-orbit tracing property (abbrev. P.O.T.P.) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of φ can be ε -traced by some point $x \in X$. We know (see A. Morimoto [11] or N. Aoki [2]) that a toral automorphism has P.O.T.P. iff it is hyperbolic.

The set $\mathcal{C}(X)$ of all closed non-empty subsets of X will be a compact metric space by the Hausdorff metric \bar{d} defined by

$$\bar{d}(A, B) = \max\{\max_{b \in B} \min_{a \in A} d(a, b), \max_{a \in A} \min_{b \in B} d(a, b)\}$$

for $A, B \in \mathcal{C}(X)$ (cf. C. Kuratowski [8]). We denote by $\operatorname{Orb}^{\delta}((X, \varphi))$ the set of all $A \in \mathcal{C}(X)$, for which there is $\{x_i\} \in \operatorname{Orb}^{\delta}((X, \varphi))$ such that $A = \operatorname{cl}\{x_i : i \in \mathbb{Z}\}$, cl denoting the closure. Let $E(\varphi)$ denote the set of all $A \in \mathcal{C}(X)$ such that for every $\varepsilon > 0$ there is $A_{\varepsilon} \in \operatorname{Orb}^{\varepsilon}((X, \varphi))$ with $\overline{d}(A, A_{\varepsilon}) < \varepsilon$. Obviously $E(\varphi)$ is closed in $\mathcal{C}(X)$. On the other hand, we define $O(\varphi) = \operatorname{cl}\{O_{\varphi}(x) : x \in X\}$ where $O_{\varphi}(x) = \operatorname{cl}\{\varphi^i(x) : i \in \mathbb{Z}\}$. It is clear that $O(\varphi) \subset E(\varphi)$. We call φ to have OE-property if $E(\varphi) = O(\varphi)$. It is easy to check that φ has OE-property whenever φ has P.O.T.P.

The question whether every toral automorphism with OE-property could be hyperbolic was raised by A. Morimoto ([10]). For this question we can give an answer as follows.

THEOREM. Let X be a compact metric group and σ be an automorphism of X. If σ has OE-property, then σ has P.O.T.P.

An easy consequence is the following

COROLLARY. Every toral automorphism with OE-property is hyperbolic. For 2 and 3 dimensional toral automorphisms, the corollary was proved in