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Introduction.

The aim of the present paper is to show that the regular representations of
some non-type I semi-direct product groups can be decomposed into direct integrals
of irreducible representations in an uncountably infinite number of completely
different ways. This is related with some cohomology groups.

The non-uniqueness of irreducible decompositions of a non-type I representation
has been pointed out by several authors, for example, [3], [4], [7], [8], [9], [10],

[11], [12], [13], [18], [19] and [20]. Concerning the regular representations $\lambda$

of non-type I semi-direct product groups $G,$ $[4],$ $[12]$ and [13] gave two kinds of
entirely different irreducible decompositions of $\lambda$ under some restrictions. In the
present paper, we shall establish similar facts in a more general situation. We
have studied in [7] and [10] that it is possible to give various kinds of irreducible
decompositions of certain non-type I factor representations, related with some
cohomology groups. In the present paper, we shall show that similar results may
be obtained even for the regular representation $\lambda$ of $G$ and that there are an
uncountably infinite number of completely different irreducible decompositions of
$\lambda$ in some cases.

Our main result is as follows. Let $G$ be a semi-direct product $N\cross sK$ of $N$

with $K$ where $N$ and $K$ are assumed to be separable locally compact abelian
groups. Then, the left regular representation $\lambda$ of $G$ is decomposed into ir-
reducible components as

$\lambda\cong\int_{\hat{N}}^{\oplus}\int_{\hat{H}\chi}^{\oplus}U^{(\chi,\theta)}d\tau_{\chi}(\theta)d\mu(\chi)$ (I)

$\cong\int_{Z}^{\oplus}\int_{\hat{K}}^{\oplus}V^{(a,\eta,\zeta)}d\nu(\eta)d\sigma(\zeta)$ (II)

where $a$ is a cocycle of the double transformation group $(K;\hat{N}\cross K;K)$ . Further,
we describe a maximal abelian von Neumann subalgebra $A^{a}$ in $\lambda(G)’$ explicitly,
which will give rise to the decomposition in (II). We state also the unitary in-


