J. Math. Soc. Japan Vol. 36, No. 1, 1984

A remark of decompositions of the regular representations of semi-direct product groups

Dedicated to Professor Hisaaki Yoshizawa on his 60th birthday

By Satoshi KAWAKAMI

(Received Jan. 26, 1983)

Introduction.

The aim of the present paper is to show that the regular representations of some non-type I semi-direct product groups can be decomposed into direct integrals of irreducible representations in an uncountably infinite number of completely different ways. This is related with some cohomology groups.

The non-uniqueness of irreducible decompositions of a non-type I representation has been pointed out by several authors, for example, [3], [4], [7], [8], [9], [10], [11], [12], [13], [18], [19] and [20]. Concerning the regular representations λ of non-type I semi-direct product groups G, [4], [12] and [13] gave two kinds of entirely different irreducible decompositions of λ under some restrictions. In the present paper, we shall establish similar facts in a more general situation. We have studied in [7] and [10] that it is possible to give various kinds of irreducible decompositions of certain non-type I factor representations, related with some cohomology groups. In the present paper, we shall show that similar results may be obtained even for the regular representation λ of G and that there are an uncountably infinite number of completely different irreducible decompositions of λ in some cases.

Our main result is as follows. Let G be a semi-direct product $N \times_s K$ of N with K where N and K are assumed to be separable locally compact abelian groups. Then, the left regular representation λ of G is decomposed into irreducible components as

$$\lambda \cong \int_{\hat{N}}^{\oplus} \int_{\hat{H}_{\chi}}^{\oplus} U^{(\chi,\,\theta)} d\tau_{\chi}(\theta) d\mu(\chi) \tag{1}$$

$$\cong \int_{z}^{\oplus} \int_{\hat{\kappa}}^{\oplus} V^{(a,\eta,\zeta)} d\nu(\eta) d\sigma(\zeta) \tag{II}$$

where a is a cocycle of the double transformation group $(K; \hat{N} \times K; K)$. Further, we describe a maximal abelian von Neumann subalgebra A^a in $\lambda(G)'$ explicitly, which will give rise to the decomposition in (II). We state also the unitary in-