On the structure of polarized manifolds with total deficiency one, III

By Takao FUJITA

(Received Jan. 8, 1983)

Introduction.

In this article we will study polarized manifolds (M, L) with $d(M, L) = \Delta(M, L) = 1$, as a continuation of [F4]. But the arguments are completely independent of part II of it, and little knowledge of part I is required here. Moreover we consider here positive characteristic cases too, with the help of [F5].

In §13, the first section of this part III, we study the structure of the rational mapping defined by |L|. It follows that $g=g(M, L) \ge 1$. In §14, assuming char $(\Re) \neq 2$ for the ground field \Re from this time on throughout in this paper, we establish a precise structure theorem for (M, L) with g=1. When $g\geq 2$, in general, we do not have so precise a result as in the case g=1. So we consider the case in which any curve $C=D_1\cap\cdots\cap D_{n-1}$ obtained by taking general members D_1, \dots, D_{n-1} of |L| successively is a hyperelliptic curve. Such (M, L) will be said to be sectionally hyperelliptic (note that this is always the case when g=2). In §15, they are classified into three types (-), (∞) and (+). Precise structures of them are described in §16, §17 and §18 respectively. In particular, it turns out that $n = \dim M = 2$ in case of type (+), $n \leq g+1$ in case of type (∞), and (M, L) is a weighted hypersurface of degree 4g+2 in $P(2g+1, 2, 1, \dots, 1)$ in case of type (-). In any case M is simply connected if $\Re = C$. Moreover, all the (M, L) of the same type $((-), (\infty)$ or (+)) and with the same n and g form a single deformation family. It is easy to calculate the number of moduli of it.

Thus, when char(\Re) $\neq 2$, the classification theory of polarized manifolds (M, L) with $\Delta(M, L)=1$ is complete except the case d(M, L)=1, $g(M, L)\geq 3$ and (M, L) is not sectionally hyperelliptic. In particular, all the Del Pezzo manifolds are completely classified.

This work was almost completed when the author was a Miller Fellow at the University of California, Berkeley. He would like to express his hearty thanks to people there, especially to Professors R. Hartshorne and A. Ogus.