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Introduction.

In this article we will study polarized manifolds $(M, L)$ with $d(M, L)=$

$\Delta(M, L)=1$ , as a continuation of [F4]. But the arguments are completely in-
dependent of part II of it, and little knowledge of part I is required here.
Moreover we consider here positive characteristic cases too, with the help of [F5].

In \S 13, the first section of this part III, we study the structure of the ra-
tional mapping defined by $|L|$ . It follows that $g=g(M, L)\geqq 1$ . In \S 14, assum-
ing char $(\mathfrak{K})\neq 2$ for the ground field $\mathfrak{K}$ from this time on throughout in this paper,
we establish a precise structure theorem for $(M, L)$ with $g=1$ . When $g\geqq 2$ , in
general, we do not have so precise a result as in the case $g=1$ . So we consider
the case in which any curve $C=D_{1}\cap\cdots\cap D_{n-1}$ obtained by taking general mem-
bers $D_{1},$ $\cdots$ , $D_{n-1}$ of $|L|$ successively is a hyperelliptic curve. Such $(M, L)$ will
be said to be sectionally hyPerelliptic (note that this is always the case when
$g=2)$ . In \S 15, they are classified into three types (–), $(\infty)$ and $(+)$ . Precise
structures of them are described in \S 16, \S 17 and \S 18 respectively. In particular,
it turns out that $n=\dim M=2$ in case of type $(+),$ $n\leqq g+1$ in case of type $(\infty)$ ,

and $(M, L)$ is a weighted hypersurface of degree $4g+2$ in $P(2g+1,2,1, \cdots , 1)$

in case of type (–). In any case $M$ is simply connected if $\mathfrak{K}=C$ . Moreover,
all the $(M, L)$ of the same type $((-), (\infty)$ or $(+))$ and with the same $n$ and $g$

form a single deformation family. It is easy to calculate the number of moduli
of it.

Thus, when char $(\mathfrak{K})\neq 2$ , the classification theory of polarized manifolds $(M, L)$

with $\Delta(M, L)=1$ is complete except the case $d(M, L)=1,$ $g(M, L)\geqq 3$ and $(M, L)$

is not sectionally hyperelliptic. In particular, all the Del Pezzo manifolds are
completely classified.
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