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§0. Introduction.

L. S. Charlap showed that there are two compact differentiable manifolds
M and N such that MXS?! is diffeomorphic to NxS?, while M and N are of
different homotopy type (see [1]).

On the other hand, considering a Riemannian analogue of the above problem,
we obtained the following result [3]:

Let M and N be connected complete Riemannian manifolds and S a connected
compact locally symmetric Riemannian manifold. If MXS is isometric to NXS,
then M is isometric to N.

Later on, H. Takagi obtained the following result [2]:

Let M and N be connected complete Riemannian manifolds and let S be a
connected complete Riemannian wmanifold which is simply connected or has the
irreducible restricted homogeneous holonomy group. If MXS is isometric to NX
S, then M is isometric to N.

The purpose of this paper is to give a complete answer to the above problem
in Riemannian case.

The main result is the following.

THEOREM. If MXS is isometric to NXS, then M is isometric to N, where
M, N and S are connected complete Riemannian manifolds.

In this paper, Riemannian manifolds are always supposed to be connected
and complete, and = means isometric.

We shall give a brief account of the idea of the proof. Let M, N and S be
Riemannian manifolds such that MXS is isometric to NxXS. Then M=X/I},
N=X/I, and S=Y /I, where X and Y are simply connected Riemannian mani-
folds and I, I, and I} are deck transformation groups of M, N and S, respec-
tively. If we could find an isometry g of X XY satisfying Conditions 1 and 2 in
Lemma 3, then our theorem would be proved. An isometry g of XXY which
is a natural lift of an isometry from MXS to NXS satisfies Condition 1 in
Lemma 3. While if X and Y have the Euclidean parts in its de Rham decom-



