Cancellation law for Riemannian direct product

By Kagumi UESU

(Received Sept. 11, 1980) (Revised Nov. 29, 1982)

§ 0. Introduction.

L. S. Charlap showed that there are two compact differentiable manifolds M and N such that $M \times S^1$ is diffeomorphic to $N \times S^1$, while M and N are of different homotopy type (see [1]).

On the other hand, considering a Riemannian analogue of the above problem, we obtained the following result [3]:

Let M and N be connected complete Riemannian manifolds and S a connected compact locally symmetric Riemannian manifold. If $M \times S$ is isometric to $N \times S$, then M is isometric to N.

Later on, H. Takagi obtained the following result [2]:

Let M and N be connected complete Riemannian manifolds and let S be a connected complete Riemannian manifold which is simply connected or has the irreducible restricted homogeneous holonomy group. If $M \times S$ is isometric to $N \times S$, then M is isometric to N.

The purpose of this paper is to give a complete answer to the above problem in Riemannian case.

The main result is the following.

THEOREM. If $M \times S$ is isometric to $N \times S$, then M is isometric to N, where M, N and S are connected complete Riemannian manifolds.

In this paper, Riemannian manifolds are always supposed to be connected and complete, and \cong means isometric.

We shall give a brief account of the idea of the proof. Let M, N and S be Riemannian manifolds such that $M \times S$ is isometric to $N \times S$. Then $M \cong X/\Gamma_1$, $N \cong X/\Gamma_2$ and $S \cong Y/\Gamma_3$ where X and Y are simply connected Riemannian manifolds and Γ_1 , Γ_2 and Γ_3 are deck transformation groups of M, N and S, respectively. If we could find an isometry \tilde{g} of $X \times Y$ satisfying Conditions 1 and 2 in Lemma 3, then our theorem would be proved. An isometry g of $X \times Y$ which is a natural lift of an isometry from $M \times S$ to $N \times S$ satisfies Condition 1 in Lemma 3. While if X and Y have the Euclidean parts in its de Rham decom-