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\S 1. Introduction.

Concerning the value distribution of the Gauss maps of complete minimal
surfaces in $R^{m}$ , there have been several results obtained by R. Osserman, S.S.
Chern, F. Xavier and others ([10], [2], [7], [13]). Recently, the author proved
that the Gauss map of a complete minimal surface in $R^{m}$ is necessarily degenerate
if it omits more than $m^{2}$ hyperplanes in $P^{m-1}(C)$ located in general position ([4]).

The purpose of this paper is to give several improvements of these results.
Let $f$ be a holomorphic map of an open Riemann surface $M$ into $P^{n}(C)$ and

$H$ a hyperplane in $P^{n}(C)$ with $f(M)\not\subset H$. For an arbitrarily fixed positive integer
$\mu_{0}$ we define the non-integrated defect of $H$ for $f$ by

$\delta_{\mu_{0}}^{f}(H):=1-\inf$ { $\eta\geqq 0$ : $\eta$ satisfying condition $(*)$ }.

Here, condition $(*)$ means that there exists a non-negative smooth function $v$ on
$M$ such that log $v$ is subharmonic, log $v\leqq\eta$ log $\Vert f\Vert$ and, in a neighborhood of each
point $p\in f^{-1}(H)$ ,

log $v(\zeta)$ –min $(\nu^{f}(H)(p), \mu_{0})\log|\zeta-\zeta(p)|$

is subharmonic, where $\Vert f\Vert$ $:=(|f_{1}|^{2}+\cdots+|f_{n+1}|^{2})^{1/2}$ for a reduced representa-
tion $f=(f_{1}$ : $\cdots$ : $f_{n+1}),$ $\zeta$ is a holomorphic local coordinate around $P$ and $\nu^{f}(H)(p)$

denotes the intersection multiplicity of $f(M)$ and $H$ at $f(p)$ . We note that

(1.1) $\delta_{\mu_{0}}^{f}(H)=1$

if $f(M)\cap H=\emptyset$ , or more generally, if there is a bounded holomorphic function $g$

on $M$ such that $g$ has zeros of order $\nu^{f}(H)(p)$ at each point $p\in f^{-1}(H)$ . More-
over, we can show that
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