Some statement which implies the existence of Ramsey ultrafilters on ω

By Shizuo KAMO

(Received March 1, 1982)

1. Introduction and results.

Throughout this paper, we work in Zelmero-Fraenkel set theory with choice (ZFC). Let \mathfrak{F} be a filter on A and let f be a function from A to B. $f(\mathfrak{F})$ denotes the filter $\{y \subset B; f^{-1}y \in \mathfrak{F}\}$. \mathfrak{F} is said to be free if $\emptyset \in \mathfrak{F}$ and $frac{1}{2} = \emptyset$. \mathfrak{F} is said to be free if there exists an infinite subset $frac{1}{2} = \emptyset$ and $frac{1}{2} = \emptyset$. $frac{1}{2} = \emptyset$ is finite. $frac{1}{2} = \emptyset$ is said to be free if, for any free ultrafilter (uf) $frac{1}{2} = \emptyset$ on $frac{1}{2} = \emptyset$ is said to be $frac{1}{2} = \emptyset$ and $frac{1}{2} = \emptyset$ is finite. $frac{1}{2} = \emptyset$ is said to be $frac{1}{2} = \emptyset$ if, for any free ultrafilter (uf) $frac{1}{2} = \emptyset$ on $frac{1}{2} = \emptyset$ is said to be $frac{1}{2} = \emptyset$ if is trivial that any free, ample filter is weakly ample. For any infinite cardinal $frac{1}{2} = \emptyset$ is ample. It is easy to see that, whenever $frac{1}{2} = \emptyset$ implies $frac{1}{2} = \emptyset$ is ample. Purity proved the following Theorem 1.

THEOREM 1 (Puritz $\lceil 5 \rceil$).

- (a) The continuum hypothesis (CH) implies AN(c), where c denotes 2^{ω} .
- (b) AN(ω) implies that there are P-points on ω .
- (c) $AN(2^c)$ does not hold.

He asked whether the existence of P-points implies $AN(\omega)$. This question is answered negatively by Theorem 5 which appears below. By Theorem 1 (a), (c), under the assumption $CH+2^{\omega_1}=\omega_2$, $AN(\kappa)$ holds if and only if $\kappa=\omega$ or $\kappa=\omega_1$. Let P be the statement: "any free, κ -generated filter on ω is ample, for all $\kappa < c$ ". Then, the proof of Theorem 1 (a) (in [5; p. 222]) yields a proof of that P implies AN(c). Since Martin's Axiom (MA) implies P (cf. [4; Theorem 5]), it holds that MA implies AN(c). By this, Theorem 1 (b) and a result of Shelah that the existence of P-points is unprovable (in ZFC), the negation of CH implies neither AN(c) nor $\neg AN(c)$.

We shall consider what cardinals κ satisfy $AN(\kappa)$ in the cases where CH $+2^{\omega_1}=\omega_2$ fails. Our results are the following Theorems which are proved in Sections $3\sim6$.

This research was partially supported by Grant-in-Aids for Scientific Research (No. 56740101 and No. 56340009).