On the class of polar sets for a certain class of Lévy processes on the line

By Mamoru KANDA

(Received June 22, 1981) (Revised Dec. 8, 1981)

Let X be a Lévy process (a process with stationary independent increments) on the line having the exponent Ψ and λ -capacity function C^{λ} . We assume that X satisfies the following conditions:

- (A₁) the λ -resolvent is absolutely continuous with respect to Lebesgue measure,
- (A_2) every point is polar,
- (D_{α}) for a fixed $\lambda>0$ there exist α $(1>\alpha>0)$, and a continuous function F on $(0, \infty)$ such that

$$F(z) \simeq \Re e(\lceil \lambda + \Psi(z) \rceil^{-1}), \quad z \to \infty,$$

and $z^{\alpha}F(z)$ is decreasing on $(0, \infty)$, and

(I) for a fixed $\lambda > 0$ there exists a constant M > 0 such that

$$\mathcal{R}e(\lceil \lambda + \Psi(2z) \rceil^{-1})/\mathcal{R}e(\lceil \lambda + \Psi(z) \rceil^{-1}) \geq M$$

for every z>0.

Throughout this article we use the notation f(z) < g(z), $z \to a$, if $\limsup_{z \to a} f(z) / g(z)$ $< \infty$ and f(z) > g(z), $z \to a$, if f(z) < g(z), $z \to a$ and g(z) < f(z), $z \to a$. We write f(z) < g(z), $z \to a$, if $\lim_{z \to a} f(z) / g(z) = 0$.

Then we have

THEOREM 1. Suppose that X satisfies (A_1) , (A_2) , (D_{α}) and (I). Put

$$\phi(x) = \int_0^{1/x} \mathcal{R} e\left([\lambda + \Psi(z)]^{-1} \right) dz$$
, $x > 0$.

Then $C^{\lambda}(K)=0$ if and only if $C^{\phi}(K)=0$, where $C^{\phi}(K)$ denotes the Frostman's ϕ -capacity of K.

For general class of Lévy processes, if, for $\lambda > 0$ and $M_1 > 0$

$$(0.1) \mathcal{R}e\left(\left[\lambda + \Psi_1(z)\right]^{-1}\right) \leq M_1 \mathcal{R}e\left(\left[\lambda + \Psi_2(z)\right]^{-1}\right) \text{for all } z,$$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 56540062), Ministry of Education.