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Introduction.

The purpose of this paper is to prove the rationality for the local Hecke
series of some classical groups over $\mathfrak{p}$-adic fields, and to calculate the degrees
of its numerator and the denominator.

Let $k$ be a $\mathfrak{p}$-adic field. Let $K$ be either $k$ itself, a quadratic extension of
$k$ , or the (unique) central division quaternion algebra over $k$ . We denote by
$x-\overline{x}(x\in K)$ the canonical involution. Let $\epsilon$ be an element of the center of
$K$ such that $\epsilon\overline{\epsilon}=1,$ $V$ be an n-dimensional (right) vector space over $K$ with a
non-degenerate $\epsilon$-hermitian form $\Phi( , )$ , and $L$ be a maximal lattice in $V$ (cf.

\S 1-1). Let $G$ be the connected component (in the sense of an algebraic group
over k) of

$\tilde{G}=$ {$g\in GL(V);\Phi(gx,$ $gy)=\mu(g)\Phi(x,$ $y)$ for all $x,$ $y\in V,$ $\mu(g)\in k^{\cross}$ }.

Let $U$ be the subgroup of $G$ consisting of all elements of $G$ which leave $L$

invariant. It is known that $U$ is a maximal compact subgroup of $G$ . For $m$

$\geqq 0$, set
$X(m)=\{g\in G;gL\subset L, ord_{\mathfrak{p}}\mu(g)=fm\}$ ,

where $ord_{\mathfrak{p}}(x)$ is the $\mathfrak{p}$-order of $x$ for $x\in k$ , and the positive integer $f$ is deter-
mined by the condition $ord_{\mathfrak{p}}\mu(G)=fZ$. Let $T(m)$ be the characteristic function
of $X(m)$ in $G$, considered as an element of the Hecke algebra of the group $G$

with respect to $U$ (see \S 1-2). Then the (local) Hecke series of the group $G$

with respect to $U$ is by definition

$Z_{(G.U)}(T)= \sum_{m=0}^{\infty}T(m)T^{m}$ ,

where $T$ is an indeterminate.
Our main result is that the Hecke series $Z_{(G,U)}(T)$ is a rational function in

$T$, and the degree of the numerator is $2^{\nu}-1$ or $2^{\nu}-2$, while that of the deno-
minator is $2^{\nu}$, where $\nu$ is the Witt index of (V, $\Phi$).

When $\Phi$ is an alternating form, the Hecke series has been studied in


