J. Math. Soc. Japan Vol. 35, No. 1, 1983

On the local Hecke series of some classical groups over p-adic fields

By Tatsuo HINA and Takashi SUGANO

(Received Sept. 25, 1981)

Introduction.

The purpose of this paper is to prove the rationality for the local Hecke series of some classical groups over p-adic fields, and to calculate the degrees of its numerator and the denominator.

Let k be a p-adic field. Let K be either k itself, a quadratic extension of k, or the (unique) central division quaternion algebra over k. We denote by $x \mapsto \bar{x}$ ($x \in K$) the canonical involution. Let ε be an element of the center of K such that $\varepsilon \bar{\varepsilon} = 1$, V be an n-dimensional (right) vector space over K with a non-degenerate ε -hermitian form $\Phi(,)$, and L be a maximal lattice in V (cf. § 1-1). Let G be the connected component (in the sense of an algebraic group over k) of

$$\widetilde{G} = \{g \in GL(V); \ \varPhi(gx, gy) = \mu(g) \ \varPhi(x, y) \text{ for all } x, y \in V, \ \mu(g) \in k^{\times}\}.$$

Let U be the subgroup of G consisting of all elements of G which leave L invariant. It is known that U is a maximal compact subgroup of G. For $m \ge 0$, set

$$X(m) = \{g \in G; gL \subset L, \operatorname{ord}_{\mathfrak{p}}\mu(g) = fm\},\$$

where $\operatorname{ord}_{\mathfrak{p}}(x)$ is the \mathfrak{p} -order of x for $x \in k$, and the positive integer f is determined by the condition $\operatorname{ord}_{\mathfrak{p}}\mu(G)=f\mathbb{Z}$. Let T(m) be the characteristic function of X(m) in G, considered as an element of the Hecke algebra of the group G with respect to U (see § 1-2). Then the (local) Hecke series of the group G with respect to U is by definition

$$Z_{(G,U)}(T) = \sum_{m=0}^{\infty} T(m) T^{m}$$
,

where T is an indeterminate.

Our main result is that the Hecke series $Z_{(G,U)}(T)$ is a rational function in T, and the degree of the numerator is $2^{\nu}-1$ or $2^{\nu}-2$, while that of the denominator is 2^{ν} , where ν is the Witt index of (V, Φ) .

When Φ is an alternating form, the Hecke series has been studied in