Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary

By Atsushi KASUE

(Received Sept. 14, 1981)

Introduction.

Let M be a connected, complete Riemannian manifold with (possibly empty) boundary ∂M. Cheeger and Gromoll proved in [4] that if ∂M is empty and the Ricci curvature of M is nonnegative, then the Busemann function with respect to any ray is superharmonic on M. From this result, they showed that M as above is the isometric product $N \times R^k (k \geq 0)$, where N contains no lines and R^k has its standard flat metric. They also proved in [5] that if M is a convex subset with boundary ∂M in a positively curved manifold, then the distance function to ∂M is concave on M. Later, making use of this result, Burago and Zalgaller obtained in [3] a theorem on such a manifold M saying that

1. the number of components of ∂M is not greater than 2,
2. if there are two components Γ_1 and Γ_2 of ∂M, then M is isometric to the direct product $[0, a] \times \Gamma_1$,
3. if ∂M is connected and compact, but M is noncompact, then M is isometric to the direct product $[0, \infty) \times \partial M$.

Recently we have obtained in [9] a sharp and general Laplacian comparison theorem, which tells us the behavior of the Laplacian of a distance function or a Busemann function on M in terms of the Ricci curvature of M. In this paper, using our comparison theorem, we shall study Riemannian manifolds with boundary and obtain, roughly speaking, a generalization of the above result by Burago and Zalgaller from the viewpoint of Ricci curvature.

We shall now describe our main theorems. Let M be a connected, complete Riemannian manifold of dimension m with smooth boundary ∂M. We call M complete if it is complete as a metric space with the distance induced by the Riemannian metric of M. Let R and A be two real numbers. We say M is of class (R, A) if the Ricci curvature of $M \equiv (m-1)R$ and (the trace of $S_\xi \leq (m-1)A$ for any unit inner normal vector field ξ of ∂M, where S_ξ is the second fundamental form of ∂M with respect to ξ (i.e., $\langle S_\xi X, Y \rangle = \langle \nabla_X \xi, Y \rangle$). We write $i(M)$ for the inradius of M (i.e., $i(M) = \sup \{ \text{dis}_M(x, \partial M) : x \in M \} \leq +\infty$). Let f