On meromorphic maps into a compact complex manifold

By Hirotaka FUJIMOTO

(Received Feb. 10, 1981)

§1. Introduction.

In [8], the author has shown that, for any given hyperplanes H_1, \dots, H_{N+2} in $P^N(C)$ located in general position and effective divisors E_1, \dots, E_{N+2} on C^n , the set $\mathcal{F} := \mathcal{F} \begin{pmatrix} H_1, \dots, H_{N+2} \\ E_1, \dots, E_{N+2} \end{pmatrix}$ of all non-degenerate meromorphic maps of C^n into $P^N(C)$ such that the pull-backs $f^*(H_i)$ $(1 \le i \le N+2)$ of divisors H_i are equal to E_i respectively is finite. The purpose of this paper is partly to prove that the number of maps in the above set \mathcal{F} is bounded by a constant depending only on N and mainly to generalize this result to the case of meromorphic maps into a compact complex manifold.

Let M be an N-dimensional connected compact complex manifold and L be a line bundle over M. We denote by $H^{0}(M, \mathcal{O}(L))$ the set of all holomorphic sections of L and by (ϕ) the divisor of zeros of a non-zero section $\phi \in H^{0}(M, \mathcal{O}(L))$. Set

$$|L| = \{(\phi); \phi \in H^0(M, \mathcal{O}(L)), \phi \not\equiv 0\}.$$

DEFINITION 1.1. Let $D_1, \dots, D_m \in |L|$ such that $D_i = (\phi_i)$ $(1 \le i \le m)$ for $\phi_i \in H^0(M, \mathcal{O}(L))$. We define ϕ_1, \dots, ϕ_m (or D_1, \dots, D_m) to be algebraically independent if there exists no non-zero homogeneous polynomial $P(w_1, \dots, w_m)$ satisfying the relation

 $P(\phi_1, \cdots, \phi_m) \equiv 0$

in $H^{0}(M, \mathcal{O}(L^{d}))$, where $d = \deg P$.

DEFINITION 1.2. A meromorphic map $f: \mathbb{C}^n \to M$ is said to be algebraically non-degenerate with respect to L if there exists no non-zero holomorphic section $\phi \in H^0(M, \mathcal{O}(L^d))$ (d > 0) such that $f(\mathbb{C}^n) \subseteq \{\phi = 0\}$.

Take N+2 divisors $D_1, \dots, D_{N+2} \in |L|$ and effective divisors E_1, \dots, E_{N+2} on C^n . Let $\mathscr{F}\begin{pmatrix} D_1, \dots, D_{N+2} \\ E_1, \dots, E_{N+2} \end{pmatrix}$ denote the set of all meromorphic maps of C^n into M which are algebraically non-degenerate with respect to L such that the

This research was partially supported by Grant-in-Aids for Scientific Research (No. 564049 and No. 546004), Ministry of Education.