J. Math. Soc. Japan Vol. 34, No. 3, 1982

Note on γ -dimension and products of real projective spaces

By Teiichi KOBAYASHI

(Received Oct. 11, 1980) (Revised Jan. 19, 1981)

1. Introduction.

Let α be the stable class of a vector bundle over a complex X. The γ -dimension, dim_r α , of α is defined as follows (cf. [6]):

 $\dim_r \alpha = \sup \{i \in N | \gamma^i(\alpha) \neq 0\},\$

where N is the set of positive integers and γ^i is the *i*-th Grothendieck γ -operation (cf. [2]). Let $\tau_0(M)$ denote the stable class of the tangent bundle $\tau(M)$ of a differentiable manifold M. H. Suzuki [5] investigated $\dim_{\gamma}\tau_0(P^m \times P^n)$ and $\dim_{\gamma}(-\tau_0(P^m \times P^n))$, where P^n is the *n*-dimensional real projective space, and applied them to the problem of vector fields on $P^m \times P^n$ and to the problem of immersions and embeddings of $P^m \times P^n$ in Euclidean spaces. The purpose of this note is to improve Suzuki's results.

Let $\varphi(n)$ be the number of integers s such that $0 < s \le n$ and s = 0, 1, 2 or 4 mod 8, [a] be the integral part of a real number a, and $\binom{k}{i}$ be a binomial coefficient k!/(k-i)!i!. Define integers $\delta(n)$ and $\delta(m, n)$ as follows:

$$\begin{split} \delta(n) &= \max\left\{i > 0 \mid 2^{i-1} \binom{n+1}{i} \not\equiv 0 \mod 2^{\varphi(n)}\right\},\\ \delta(m, n) &= \max\left\{i > 1 \mid 2^{i-2} \left\{ \binom{m+n+2}{i} - \binom{m+1}{i} - \binom{n+1}{i} \right\} \not\equiv 0 \mod 2^{\lceil l/2 \rceil}\right\}, \end{split}$$

where $l = \min\{m, n\}$. Then we prove

THEOREM 1. $\dim_{\gamma} \tau_0(P^m \times P^n) \ge \delta(m, n).$

If $m=n=2^r-2$ $(r\geq 3)$, then $\delta(m, n)=2^{r-1}=\delta(n)+1>\delta(n)$. Therefore Theorem 1 is a partial improvement of [5, (4.2)]. But if $m=2^r-2$ and $n\leq 2^{r-1}-2$ $(r\geq 3)$ then $\delta(m, n)\leq 2^{r-2}<2^{r-1}-1=\delta(m)$ and hence in this case [5, (4.2)] is better than the theorem. Combining [5, (4.2)] and Theorem 1, we obtain

This research was partially supported by Grant-in-Aid for Scientific Research (No. C-55408), Ministry of Education.