Exceptional values for meromorphic solutions of some difference equations

By Niro YANAGIHARA

(Received Jan. 12, 1981)

1. Introduction.

In this note, we consider the non-linear difference equation

(1.1)
$$y(x+1) = R(y(x))$$
,

where R(x) is a rational function with the degree p, $p \ge 2$. Julia [1, p. 158] proved that

either there is a number λ such that

(1.2)
$$\lambda = R(\lambda), \quad R'(\lambda) = 1,$$

or there is a number λ such that

(1.3)
$$\lambda = R(\lambda), \qquad |R'(\lambda)| > 1.$$

In either case, the equation (1.1) has a meromorphic solution determined as follows. Let λ be a number for which (1.2) holds. Putting

(1.2-1)
$$y(x) = \lambda + 1/w(x)$$
,

we obtain

(1.2-2)
$$w(x+1) = w(x) \left[1 - \frac{R^{(m+1)}(\lambda)}{(m+1)!} w(x)^{-m} + \cdots \right] \quad (m \ge 1)$$

 $=R_1(w(x))$, with a rational function $R_1(x)$.

Further, if we put

(1.2-3)
$$\omega(\dot{x}) = w(x)^m / A^m$$
, $A = \left[\frac{-m}{(m+1)!} R^{(m+1)}(\lambda)\right]^{1/m}$,

then we get

(1.2-4)
$$\omega(x+1) = F(\omega(x)),$$

where

(1.2-5)
$$F(x) = x + 1 + \sum_{j \ge m+1} b_j x^{1-j/m}.$$

This work was partially supported by Grant-in-Aid for Scientific Research (No. 564041), Ministry of Education.