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1. Introduction.

In this note, we consider the non-linear difference equation

(1.1) $y(x+1)=R(y(x))$ ,

where $R(x)$ is a rational function with the degree $p,$ $p\geqq 2$ .
Julia [1, p. 158] proved that

either there is a number $\lambda$ such that

(1.2) $\lambda=R(\lambda)$ , $R^{\prime}(\lambda)=1$ ,

or there is a number $\lambda$ such that

(1.3) $\lambda=R(\lambda)$ , $|R^{\prime}(\lambda)|>1$ .

In either case, the equation (1.1) has a meromorphic solution determined as follows.
Let $\lambda$ be a number for which (1.2) holds. Putting

(1.2-1) $y(x)=\lambda+1/w(x)$ ,

we obtain

(1.2-2) $w(x+1)=w(x)[1-\frac{R^{(m+1)}(\lambda)}{(m+1)1}w(x)^{-m}+$ $]$ $(m\geqq 1)$

$=R_{1}(w(x))$ , with a rational function $R_{1}(x)$ .
Further, if we put

(1.2-3) $\omega(\dot{x})=w(x)^{m}/A^{m}$ , $A=[\frac{-m}{(m+1)1}R^{(m+1)}(\lambda)]^{1/m}$

then we get

$(1.2A)$ $\omega(x+1)=F(\omega(x))$ ,

where

(1.2-5) $F(x)=x+1+\sum_{j\geq m+1}b_{j}x^{1-j/m}$ .
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