The role of boundary Harnack principle in the study of Picard principle

By Tosbimasa TADA

(Received Nov. 26, 1980)

A nonnegative locally Hölder continuous function P on $0<|z|\leq 1$ will be referred to as a *density* on $\Omega:0<|z|<1$. Here we consider Ω as an end of the punctured sphere $0<|z|\leq+\infty$ so that the point $z=0$ is viewed as the ideal boundary $\delta\varOmega$ of $\varOmega,$ the unit circle $|z|$ $=$ 1 as the relative boundary $\partial\varOmega$ of $\varOmega,$ and the punctured closed unit disk $0 {<} \, |z| {\leq} 1$ as the relative closure \varOmega of \varOmega . Similar notations are used for subregions of \varOmega . For example we denote by $\partial\varOmega_{a}$ and $\overline{\Omega}_{a}$ the relative boundary $|z|=a$ and the relative closure $0<|z|\leq a$ of the subregion $\Omega_{a}: 0<|z|< a$ ($a\in(0, 1]$) of Ω , respectively. A density P on Ω gives rise to an elliptic operator $L=L_{P}$ on Ω defined by

$$
Lu = L_P u = \Delta u - Pu \ , \qquad \Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 \ .
$$

Since $\delta\Omega$ is of parabolic character, there exists a unique bounded solution $e(z, a)=e_{P}(z, a),$ referred to as the P-unit on Ω_{a} , of $Lu=0$ on Ω_{a} with continuous boundary values 1 on $\partial\Omega_{a}$. We simply denote by $e(z)=e_{P}(z)$ the P-unit $e(z, 1)=e_{P}(z, 1)$ on Ω . With the operator $L=L_{P}$ we associate an elliptic operator $\mathcal{\hat{L}}\!=\!\mathcal{\hat{L}}_{P}$ on $\varOmega,$ referred to as the *associate operator* to $L\!=\!L_{P},$ given by

$$
\hat{L}v = \hat{L}_P v = \Delta v + 2\nabla \log e_P \cdot \nabla v \,, \qquad \nabla = (\partial/\partial x, \partial/\partial y) \,.
$$

After Bouligand we say that the *Picard principle* is valid for P at $\delta\Omega$ if the dimension of the half module of nonnegative solutions of $Lu=0$ on Ω with continuous boundary values 0 on $\partial\Omega$ is 1. We also say that the *Riemann theorem* is valid for \hat{L} at $\delta\Omega$ if the limit $\lim_{z\rightarrow\delta\Omega}v(z)$ exists for every bounded solution v of $\hat{L}v=0$ on Ω . Then we have the following *duality theorem* (cf. Heins [3], Hayashi [2], Nakai [8]): The Picard principle is valid for P at $\delta\Omega$ if and only if the Riemann theorem is valid for \hat{L} at $\delta\Omega$. As a sufficient condition of the Riemann theorem for \hat{L} at $\delta\Omega$ we have, what we call, the following boundary Harnack principle for L at $\delta\Omega$:

(1) For every a in (0, 1] there exists a Jordan curve K_{a} in Ω_{a} which separates $\delta\Omega$ from $\partial\Omega_{a}$ and satisfies $C(K_{a} ; \Omega_{a}, L)=O(1)$ (a \rightarrow 0), where for every

This work was done partly supported by Grant-in-Aid for Scientific Research (No. 374055), Ministry of Education.