The role of boundary Harnack principle in the study of Picard principle

By Toshimasa TADA

(Received Nov. 26, 1980)

A nonnegative locally Hölder continuous function P on $0 < |z| \leq 1$ will be referred to as a *density* on $\Omega: 0 < |z| < 1$. Here we consider Ω as an end of the punctured sphere $0 < |z| \leq +\infty$ so that the point z=0 is viewed as the ideal boundary $\partial \Omega$ of Ω , the unit circle |z|=1 as the relative boundary $\partial \Omega$ of Ω , and the punctured closed unit disk $0 < |z| \leq 1$ as the relative closure $\overline{\Omega}$ of Ω . Similar notations are used for subregions of Ω . For example we denote by $\partial \Omega_a$ and $\overline{\Omega}_a$ the relative boundary |z|=a and the relative closure $0 < |z| \leq a$ of the subregion $\Omega_a: 0 < |z| < a$ ($a \in (0, 1]$) of Ω , respectively. A density P on Ω gives rise to an elliptic operator $L=L_P$ on Ω defined by

$$Lu = L_P u = \Delta u - P u$$
, $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial y^2$.

Since $\delta \Omega$ is of parabolic character, there exists a unique bounded solution $e(z, a) = e_P(z, a)$, referred to as the *P*-unit on Ω_a , of Lu=0 on Ω_a with continuous boundary values 1 on $\partial \Omega_a$. We simply denote by $e(z) = e_P(z)$ the *P*-unit $e(z, 1) = e_P(z, 1)$ on Ω . With the operator $L = L_P$ we associate an elliptic operator $\hat{L} = \hat{L}_P$ on Ω , referred to as the associate operator to $L = L_P$, given by

$$\hat{L}v = \hat{L}_P v = \Delta v + 2\nabla \log e_P \cdot \nabla v$$
, $\nabla = (\partial/\partial x, \partial/\partial y)$.

After Bouligand we say that the *Picard principle* is valid for P at $\delta \Omega$ if the dimension of the half module of nonnegative solutions of Lu=0 on Ω with continuous boundary values 0 on $\partial \Omega$ is 1. We also say that the *Riemann theorem* is valid for \hat{L} at $\delta \Omega$ if the limit $\lim_{z\to \partial\Omega} v(z)$ exists for every bounded solution v of $\hat{L}v=0$ on Ω . Then we have the following *duality theorem* (cf. Heins [3], Hayashi [2], Nakai [8]): The Picard principle is valid for P at $\delta \Omega$ if and only if the Riemann theorem is valid for \hat{L} at $\delta \Omega$. As a sufficient condition of the Riemann theorem for \hat{L} at $\delta \Omega$ we have, what we call, the following *boundary Harnack principle* for L at $\delta \Omega$:

(1) For every a in (0, 1] there exists a Jordan curve K_a in Ω_a which separates $\delta \Omega$ from $\partial \Omega_a$ and satisfies $C(K_a; \Omega_a, L) = O(1)$ $(a \rightarrow 0)$, where for every

This work was done partly supported by Grant-in-Aid for Scientific Research (No. 374055), Ministry of Education.